
Giulio Cabrini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8483424/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Overview of CF lung pathophysiology. Current Opinion in Pharmacology, 2022, 64, 102214.	1.7	10
2	miRNAs in Serum Exosomes for Differential Diagnosis of Brain Metastases. Cancers, 2022, 14, 3493.	1.7	8
3	A molecular signature associated with prolonged survival in glioblastoma patients treated with regorafenib. Neuro-Oncology, 2021, 23, 264-276.	0.6	48
4	Treatment of human airway epithelial Calu-3Âcells with a peptide-nucleic acid (PNA) targeting the microRNA miR-101-3p is associated with increased expression of the cystic fibrosis Transmembrane Conductance Regulator () gene. European Journal of Medicinal Chemistry, 2021, 209, 112876.	2.6	18
5	A Peptide-Nucleic Acid Targeting miR-335-5p Enhances Expression of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Gene with the Possible Involvement of the CFTR Scaffolding Protein NHERF1. Biomedicines, 2021, 9, 117.	1.4	9
6	Serum Exosomal microRNA-21, 222 and 124-3p as Noninvasive Predictive Biomarkers in Newly Diagnosed High-Grade Gliomas: A Prospective Study. Cancers, 2021, 13, 3006.	1.7	22
7	Editorial: Novel Anti-Inflammatory Approaches for Cystic Fibrosis Lung Disease: Identification of Molecular Targets and Design of Innovative Therapies. Frontiers in Pharmacology, 2021, 12, 794854.	1.6	7
8	Role of Cystic Fibrosis Bronchial Epithelium in Neutrophil Chemotaxis. Frontiers in Immunology, 2020, 11, 1438.	2.2	25
9	Pharmacological modulation of mitochondrial calcium uniporter controls lung inflammation in cystic fibrosis. Science Advances, 2020, 6, eaax9093.	4.7	39
10	GM1 as Adjuvant of Innovative Therapies for Cystic Fibrosis Disease. International Journal of Molecular Sciences, 2020, 21, 4486.	1.8	11
11	A Peptide Nucleic Acid (PNA) Masking the miR-145-5p Binding Site of the 3′UTR of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) mRNA Enhances CFTR Expression in Calu-3 Cells. Molecules, 2020, 25, 1677.	1.7	18
12	Targeting miR‑155‑5p and miR‑221‑3p by peptide nucleic acids induces caspase‑3 activation and apop temozolomide‑resistant T98G glioma cells. International Journal of Oncology, 2019, 55, 59-68.	otosis in 1.4	22
13	Exploring the effect of chirality on the therapeutic potential of N-alkyl-deoxyiminosugars: anti-inflammatory response to Pseudomonas aeruginosa infections for application in CF lung disease. European Journal of Medicinal Chemistry, 2019, 175, 63-71.	2.6	16
14	Enhancing the Expression of CFTR Using Antisense Molecules against MicroRNA miR-145-5p. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1443-1444.	2.5	9
15	Innovative Therapies for Cystic Fibrosis: The Road from Treatment to Cure. Molecular Diagnosis and Therapy, 2019, 23, 263-279.	1.6	12
16	PLCB3 Loss of Function Reduces <i>Pseudomonas aeruginosa</i> –Dependent IL-8 Release in Cystic Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 428-436.	1.4	15
17	Design, synthesis and biological evaluation of novel trimethylangelicin analogues targeting nuclear factor kB (NF-kB). European Journal of Medicinal Chemistry, 2018, 151, 285-293.	2.6	13
18	A microRNA signature from serum exosomes of patients with glioma as complementary diagnostic biomarker. Journal of Neuro-Oncology, 2018, 136, 51-62.	1.4	125

#	Article	IF	CITATIONS
19	Molecular basis of cystic fibrosis: from bench to bedside. Annals of Translational Medicine, 2018, 6, 334-334.	0.7	36
20	A Peptide Nucleic Acid against MicroRNA miR-145-5p Enhances the Expression of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) in Calu-3 Cells. Molecules, 2018, 23, 71.	1.7	43
21	Molecular Mechanism of Action of Trimethylangelicin Derivatives as CFTR Modulators. Frontiers in Pharmacology, 2018, 9, 719.	1.6	28
22	An antisense peptide nucleic acid against Pseudomonas aeruginosa inhibiting bacterial-induced inflammatory responses in the cystic fibrosis IB3-1 cellular model system. International Journal of Biological Macromolecules, 2017, 99, 492-498.	3.6	19
23	Next-generation repeat-free FISH probes for DNA amplification in glioblastoma in vivo: Improving patient selection to MDM2-targeted inhibitors. Cancer Genetics, 2017, 210, 28-33.	0.2	2
24	Circulating microRNAs as emerging non-invasive biomarkers for gliomas. Annals of Translational Medicine, 2017, 5, 277-277.	0.7	31
25	β-Sitosterol Reduces the Expression of Chemotactic Cytokine Genes in Cystic Fibrosis Bronchial Epithelial Cells. Frontiers in Pharmacology, 2017, 8, 236.	1.6	32
26	Evidence for the Involvement of Lipid Rafts and Plasma Membrane Sphingolipid Hydrolases in Pseudomonas aeruginosa Infection of Cystic Fibrosis Bronchial Epithelial Cells. Mediators of Inflammation, 2017, 2017, 1-16.	1.4	16
27	Differential Effects of Angelicin Analogues on NF-‹i>κ‹/i>B Activity and IL-8 Gene Expression in Cystic Fibrosis IB3-1 Cells. Mediators of Inflammation, 2017, 2017, 1-11.	1.4	16
28	REGOMA: A randomized, multicenter, controlled open-label phase II clinical trial evaluating regorafenib (REG) activity in relapsed glioblastoma (GBM) patients (PTS) Journal of Clinical Oncology, 2017, 35, TPS2085-TPS2085.	0.8	3
29	Abstract 4432: Low miR-222 expression levels predict long-term survival of patients affected by glioblastoma. , 2017, , .		0
30	Tracking the immunopathological response to Pseudomonas aeruginosa during respiratory infections. Scientific Reports, 2016, 6, 21465.	1.6	70
31	MicroRNA miR-93-5p regulates expression of IL-8 and VEGF in neuroblastoma SK-N-AS cells. Oncology Reports, 2016, 35, 2866-2872.	1.2	41
32	Unravelling the role of sphingolipids in cystic fibrosis lung disease. Chemistry and Physics of Lipids, 2016, 200, 94-103.	1.5	26
33	Transient Receptor Potential Ankyrin 1 Channels Modulate Inflammatory Response in Respiratory Cells from Patients with Cystic Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 645-656.	1.4	34
34	High levels of apoptosis are induced in human glioma cell lines by co-administration of peptide nucleic acids targeting miR-221 and miR-222. International Journal of Oncology, 2016, 48, 1029-1038.	1.4	62
35	miRNA array screening reveals cooperative MGMT-regulation between miR-181d-5p and miR-409-3p in glioblastoma. Oncotarget, 2016, 7, 28195-28206.	0.8	34
36	Regulation of IL-8 gene expression in gliomas by microRNA miR-93. BMC Cancer, 2015, 15, 661.	1.1	31

#	Article	IF	CITATIONS
37	Regulation of expression of O6-methylguanine-DNA methyltransferase and the treatment of glioblastoma (Review). International Journal of Oncology, 2015, 47, 417-428.	1.4	103
38	Mitochondrial Ca2+-dependent NLRP3 activation exacerbates the Pseudomonas aeruginosa-driven inflammatory response in cystic fibrosis. Nature Communications, 2015, 6, 6201.	5.8	130
39	GBA2-Encoded Î ² -Glucosidase Activity Is Involved in the Inflammatory Response to Pseudomonas aeruginosa. PLoS ONE, 2014, 9, e104763.	1.1	19
40	Antibacterial and anti-inflammatory activity of a temporin B peptide analogue on an <i>in vitro</i> model of cystic fibrosis. Journal of Peptide Science, 2014, 20, 822-830.	0.8	27
41	Expression of microRNA-93 and Interleukin-8 during <i>Pseudomonas aeruginosa</i> –Mediated Induction of Proinflammatory Responses. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 1144-1155.	1.4	82
42	Pseudomonas aeruginosa reduces the expression of CFTR via post-translational modification of NHERF1. Pflugers Archiv European Journal of Physiology, 2014, 466, 2269-2278.	1.3	21
43	Trimethylangelicin promotes the functional rescue of mutant F508del CFTR protein in cystic fibrosis airway cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L48-L61.	1.3	46
44	Uptake by human glioma cell lines and biological effects of a peptide-nucleic acids targeting miR-221. Journal of Neuro-Oncology, 2014, 118, 19-28.	1.4	57
45	Introduction to Oxidative Stress and Antioxidant Therapy in Respiratory Disorder. Oxidative Stress in Applied Basic Research and Clinical Practice, 2014, , 1-26.	0.4	0
46	Fecal elastase-1 is useful in the detection of steatorrhea in patients with pancreatic diseases but not after pancreatic resection. Pancreatology, 2013, 13, 38-42.	0.5	82
47	Effects of decoy molecules targeting NF-kappaB transcription factors in Cystic fibrosis IB3–1 cells. Artificial DNA, PNA & XNA, 2012, 3, 97-104.	1.4	25
48	Oxidative stress and antioxidant therapy in cystic fibrosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 690-713.	1.8	186
49	Modulators of Sphingolipid Metabolism Reduce Lung Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 825-833.	1.4	43
50	Intrathoracic splenosis: evaluation by 99mTc-labelled heat-denatured erythrocyte SPECT/CT. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 412-412.	3.3	10
51	A polymorphism in the 5' UTR of the DEFB1 gene is associated with the lung phenotype in F508del homozygous Italian cystic fibrosis patients. Clinical Chemistry and Laboratory Medicine, 2011, 49, 49-54.	1.4	9
52	Phospholipase C-β3 Is a Key Modulator of IL-8 Expression in Cystic Fibrosis Bronchial Epithelial Cells. Journal of Immunology, 2011, 186, 4946-4958.	0.4	34
53	Mapping the Transcriptional Machinery of the IL-8 Gene in Human Bronchial Epithelial Cells. Journal of Immunology, 2011, 187, 6069-6081.	0.4	84
54	Trimethylangelicin reduces IL-8 transcription and potentiates CFTR function. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L380-L390.	1.3	34

#	Article	IF	CITATIONS
55	Virtual screening against nuclear factor κB (NF-κB) of a focus library: Identification of bioactive furocoumarin derivatives inhibiting NF-κB dependent biological functions involved in cystic fibrosis. Bioorganic and Medicinal Chemistry, 2010, 18, 8341-8349.	1.4	37
56	Decoy oligodeoxyribonucleotides and peptide nucleic acids–DNA chimeras targeting nuclear factor kappa-B: Inhibition of IL-8 gene expression in cystic fibrosis cells infected with Pseudomonas aeruginosa. Biochemical Pharmacology, 2010, 80, 1887-1894.	2.0	41
57	Targeting Transcription Factor Activity as a Strategy to Inhibit Pro- Inflammatory Genes Involved in Cystic Fibrosis: Decoy Oligonucleotides and Low-Molecular Weight Compounds. Current Medicinal Chemistry, 2010, 17, 4392-4404.	1.2	32
58	Virtual Screening against p50 NFâ€₽B Transcription Factor for the Identification of Inhibitors of the NFâ€₽B–DNA Interaction and Expression of NFâ€₽B Upregulated Genes. ChemMedChem, 2009, 4, 2024-2033.	1.6	14
59	Late generation lentiviral vectors: Evaluation of inflammatory potential in human airway epithelial cells. Virus Research, 2009, 144, 8-17.	1.1	7
60	Modulation of expression of IL-8 gene in bronchial epithelial cells by 5-methoxypsoralen. International Immunopharmacology, 2009, 9, 1411-1422.	1.7	25
61	Docking of molecules identified in bioactive medicinal plants extracts into the p50 NF-kappaB transcription factor: correlation with inhibition of NF-kappaB/DNA interactions and inhibitory effects on IL-8 gene expression. BMC Structural Biology, 2008, 8, 38.	2.3	48
62	Anti-inflammatory effect of miglustat in bronchial epithelial cells. Journal of Cystic Fibrosis, 2008, 7, 555-565.	0.3	45
63	Pyrogallol, an active compound from the medicinal plant Emblica officinalis, regulates expression of pro-inflammatory genes in bronchial epithelial cells. International Immunopharmacology, 2008, 8, 1672-1680.	1.7	87
64	Transcription Factor Oligodeoxynucleotides to NF-κB Inhibit Transcription of IL-8 in Bronchial Cells. American Journal of Respiratory Cell and Molecular Biology, 2008, 39, 86-96.	1.4	49
65	Chemical conjugation of ΔF508-CFTR corrector deoxyspergualin to transporter human serum albumin enhances its ability to rescue Clâî channel functions. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L336-L347.	1.3	8
66	MPB-07 Reduces the Inflammatory Response toPseudomonas aeruginosain Cystic Fibrosis Bronchial Cells. American Journal of Respiratory Cell and Molecular Biology, 2007, 36, 615-624.	1.4	39
67	Induction of IL-6 gene expression in a CF bronchial epithelial cell line by Pseudomonas aeruginosa is dependent on transcription factors belonging to the Sp1 superfamily. Biochemical and Biophysical Research Communications, 2007, 357, 977-983.	1.0	36
68	Interaction of Adenovirus Type 5 Fiber with the Coxsackievirus and Adenovirus Receptor Activates Inflammatory Response in Human Respiratory Cells. Journal of Virology, 2006, 80, 11241-11254.	1.5	77
69	A His-155 to Tyr Polymorphism Confers Gain-of-Function to the Human P2X7 Receptor of Human Leukemic Lymphocytes. Journal of Immunology, 2005, 175, 82-89.	0.4	144
70	MAP kinases and NF-κB collaborate to induce ICAM-1 gene expression in the early phase of adenovirus infection. Virology, 2003, 307, 228-242.	1.1	41
71	IL-4 Is a Potent Modulator of Ion Transport in the Human Bronchial Epithelium In Vitro. Journal of Immunology, 2002, 168, 839-845.	0.4	124
72	The vacuolating toxin ofHelicobacter pylorimimicks the CFTR-mediated chloride conductance1. FEBS Letters, 2002, 532, 237-240.	1.3	5

#	Article	IF	CITATIONS
73	Correction of G551D-CFTR transport defect in epithelial monolayers by genistein but not by CPX or MPB-07. British Journal of Pharmacology, 2002, 137, 504-512.	2.7	52
74	Failure of aldosterone suppression despite angiotensin-converting enzyme (ACE) inhibitor administration in chronic heart failure is associated with ACE DD genotype. Journal of the American College of Cardiology, 2001, 37, 1808-1812.	1.2	122
75	Activation of NF-kB mediates ICAM-1 induction in respiratory cells exposed to an adenovirus-derived vector. Gene Therapy, 2001, 8, 1436-1442.	2.3	71
76	Heparan Sulfate Glycosaminoglycans Are Receptors Sufficient To Mediate the Initial Binding of Adenovirus Types 2 and 5. Journal of Virology, 2001, 75, 8772-8780.	1.5	258
77	Radioisotopic Imaging Allows Optimization of Adenovirus Lung Deposition for Cystic Fibrosis Gene Therapy. Human Gene Therapy, 2001, 12, 1-11.	1.4	20
78	Heparan Sulfate Glycosaminoglycans Are Involved in Adenovirus Type 5 and 2-Host Cell Interactions. Virology, 2000, 268, 382-390.	1.1	236
79	ICAM-1 induction in respiratory cells exposed to a replication-deficient recombinant adenovirus in vitro and in vivo. Gene Therapy, 1998, 5, 131-136.	2.3	17
80	fMRI Changes in the Brain Associated with the Carotid Compression Test. Journal of Computer Assisted Tomography, 1998, 22, 509-513.	0.5	0
81	Nasal potential difference in cystic fibrosis patients presenting borderline sweat test. European Respiratory Journal, 1997, 10, 1145-1149.	3.1	40
82	Newborn screening strategy for cystic fibrosis: a field study in an area with high allelic heterogeneity. Acta Paediatrica, International Journal of Paediatrics, 1997, 86, 497-502.	0.7	29
83	CFTR Expression in C127 Cells Is Associated with Enhanced Cell Shrinkage and ATP Extrusion in Clâ^'-Free Medium. Biochemical and Biophysical Research Communications, 1996, 227, 755-761.	1.0	18
84	High- Versus Low-Lipase Acid-Resistant Enzyme Preparations in Cystic Fibrosis: A Crossover Randomized Clinical Trial. Journal of Pediatric Gastroenterology and Nutrition, 1996, 22, 73-78.	0.9	9
85	Changes in neutral amino acid efflux and membrane potential associated with the expression of CFTR protein. Amino Acids, 1996, 11, 247-255.	1.2	2
86	Analysis of linkage disequilibrium between different cystic fibrosis mutations and three intragenic microsatellites in the Italian population. Human Mutation, 1995, 5, 23-27.	1.1	9
87	Analysis of the complete coding region of the CFTR gene in a cohort of CF patients from North-Eastern Italy: identification of 90% of the mutations. Human Genetics, 1995, 95, 397-402.	1.8	56
88	Use of a Membrane Potential-Sensitive Probe to Assess Biological Expression of the Cystic Fibrosis Transmembrane Conductance Regulator. Human Gene Therapy, 1995, 6, 1275-1283.	1.4	28
89	CFTR Protein Is Involved in the Efflux of Neutral Amino Acids. Biochemical and Biophysical Research Communications, 1994, 204, 653-658.	1.0	10
90	Screening of 62 mutations in a cohort of cystic fibrosis patients from north eastern Italy: Their incidence and clinical features of defined genotypes. Human Mutation, 1993, 2, 389-394.	1.1	20

#	Article	IF	CITATIONS
91	Cystic fibrosis: The ΔF508 mutation does not lead to an exceptionally severe phenotype. A cohort study. European Journal of Pediatrics, 1993, 152, 1006-1011.	1.3	19
92	The sensitivity of cystic fibrosis cells to diphtheria toxin. Toxicon, 1993, 31, 359-362.	0.8	3
93	Alternative splicing of a previously unidentified CFTR exon introduces an in-frame stop codon 5' of the R region. FEBS Letters, 1993, 329, 159-162.	1.3	7
94	Phenotypic intrafamilial heterogeneity in cystic fibrosis. Clinical Genetics, 1993, 44, 48-49.	1.0	5
95	Nonsense mutation R1162X of the cystic fibrosis transmembrane conductance regulator gene does not reduce messenger RNA expression in nasal epithelial tissue Journal of Clinical Investigation, 1993, 92, 2683-2687.	3.9	21
96	Effect of modulation of protein kinase C on the cAMP-dependent chloride conductance in T84 cells. FEBS Letters, 1992, 311, 25-28.	1.3	26
97	Adenosine 3':5'-Monophosphate-Dependent Protein Kinase from Human Placenta: Characterization of the Catalytic Subunit. Enzyme, 1991, 45, 97-108.	0.7	5
98	cAMP-Dependent protein kinase inhibits the chloride conductance in apical membrane vesicles of hunman placenta. Journal of Membrane Biology, 1991, 119, 25-32.	1.0	20
99	An evaluation of an enzyme immunoassay method for immunoreactive trypsin in dried blood spots. Clinical Biochemistry, 1990, 23, 213-219.	0.8	13
100	cAMP dependent chloride conductance is not different in cystic fibrosis fibroblasts. Life Sciences, 1990, 46, 1265-1270.	2.0	4
101	Chloride conductance in membrane vesicles from human placenta using a fluorescent probe. Implications for cystic fibrosis. Biochimica Et Biophysica Acta - Biomembranes, 1988, 945, 113-120.	1.4	19
102	The K(m) of NADH Dehydrogenase Is Decreased in Mitochondria of Cystic Fibrosis Cells. Enzyme, 1988, 40, 45-50.	0.7	20
103	Increased cytosolic calcium in cystic fibrosis neutrophils effect on stimulus - secretion coupling. Life Sciences, 1985, 36, 1561-1567.	2.0	11
104	Relationships between phosphoinositide metabolism, Ca2+ changes and respiratory burst in formyl-methionyl-leucyl- phenylalanine-stimulated human neutrophils. FEBS Letters, 1985, 181, 253-258.	1.3	34