Kohei Miyazaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/84830/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical Lithium Intercalation into Graphite in Dimethyl Sulfoxide-Based Electrolytes: Effect of Solvation Structure of Lithium Ion. Journal of Physical Chemistry C, 2010, 114, 11680-11685.	1.5	152
2	Facile Preparation of Monolithic LiFePO ₄ /Carbon Composites with Well-Defined Macropores for a Lithium-Ion Battery. Chemistry of Materials, 2011, 23, 5208-5216.	3.2	82
3	Origin of the Electrochemical Stability of Aqueous Concentrated Electrolyte Solutions. Journal of the Electrochemical Society, 2018, 165, A3299-A3303.	1.3	81
4	Electrochemical oxidation of highly oriented pyrolytic graphite during potential cycling in sulfuric acid solution. Journal of Power Sources, 2008, 185, 740-746.	4.0	73
5	Towards zinc-oxygen batteries with enhanced cycling stability: The benefit of anion-exchange ionomer for zinc sponge anodes. Journal of Power Sources, 2018, 395, 195-204.	4.0	65
6	Perovskite-type oxides La1â^'xSrxMnO3 for cathode catalysts in direct ethylene glycol alkaline fuel cells. Journal of Power Sources, 2008, 178, 683-686.	4.0	60
7	New Magnesium-ion Conductive Electrolyte Solution Based on Triglyme for Reversible Magnesium Metal Deposition and Dissolution at Ambient Temperature. Chemistry Letters, 2014, 43, 1788-1790.	0.7	60
8	Electrochemical oxidation of ethylene glycol on Pt-based catalysts in alkaline solutions and quantitative analysis of intermediate products. Electrochimica Acta, 2011, 56, 7610-7614.	2.6	59
9	Effect of Graphite Orientation and Lithium Salt on Electronic Passivation of Highly Oriented Pyrolytic Graphite. Journal of the Electrochemical Society, 2012, 159, A634-A641.	1.3	54
10	Catalytic Roles of Perovskite Oxides in Electrochemical Oxygen Reactions in Alkaline Media. Journal of the Electrochemical Society, 2014, 161, F694-F697.	1.3	54
11	Suppression of Dendrite Formation of Zinc Electrodes by the Modification of Anion-Exchange Ionomer. Electrochemistry, 2012, 80, 725-727.	0.6	53
12	Single-step synthesis of nano-sized perovskite-type oxide/carbon nanotube composites and their electrocatalytic oxygen-reduction activities. Journal of Materials Chemistry, 2011, 21, 1913-1917.	6.7	48
13	Electrochemical characterization of single-layer MnO2 nanosheets as a high-capacitance pseudocapacitor electrode. Journal of Materials Chemistry, 2012, 22, 14691.	6.7	48
14	Electrochemical intercalation of bis(fluorosulfonyl)amide anions into graphite from aqueous solutions. Electrochemistry Communications, 2019, 100, 26-29.	2.3	42
15	Use of layered double hydroxides to improve the triple phase boundary in anion-exchange membrane fuel cells. Journal of Power Sources, 2010, 195, 6500-6503.	4.0	39
16	Role of Edge Orientation in Kinetics of Electrochemical Intercalation of Lithium-Ion at Graphite. Langmuir, 2010, 26, 14990-14994.	1.6	38
17	Electrochemical Intercalation of Bis(fluorosulfonyl)amide Anion into Graphite. Journal of the Electrochemical Society, 2016, 163, A499-A503.	1.3	36
18	Novel Anode Catalyst Containing Gold Nanoparticles for Use in Direct Methanol Fuel Cells. Journal of Physical Chemistry C, 2007, 111, 3171-3174.	1.5	35

#	Article	IF	CITATIONS
19	Electrochemical properties of graphite electrode in propylene carbonate-based electrolytes containing lithium and calcium ions. Electrochimica Acta, 2011, 56, 10450-10453.	2.6	31
20	Electrochemical Intercalation/De-Intercalation of Lithium Ions at Graphite Negative Electrode in TMP-Based Electrolyte Solution. Journal of the Electrochemical Society, 2012, 159, A2089-A2091.	1.3	31
21	Kinetics of Lithium-Ion Transfer at the Interface between Li4Ti5O12 Thin Films and Organic Electrolytes. ECS Electrochemistry Letters, 2014, 3, A83-A86.	1.9	31
22	Enhanced resistance to oxidative decomposition of aqueous electrolytes for aqueous lithium-ion batteries. Chemical Communications, 2016, 52, 4979-4982.	2.2	31
23	Observation of the intercalation of dimethyl sulfoxide-solvated lithium ion into graphite and decomposition of the ternary graphite intercalation compound using in situ Raman spectroscopy. Electrochimica Acta, 2018, 265, 41-46.	2.6	31
24	Lithium-ion transfer at the interfaces between LiCoO2 and LiMn2O4 thin film electrodes and organic electrolytes. Journal of Power Sources, 2015, 294, 460-464.	4.0	30
25	Electrochemical properties of LiCoPO4-thin film electrodes in LiF-based electrolyte solution with anion receptors. Journal of Power Sources, 2016, 306, 753-757.	4.0	29
26	Electrochemical Oxidation of Highly Oriented Pyrolytic Graphite in Sulphuric Acid Solution under Potential Pulse Condition. Fuel Cells, 2009, 9, 284-290.	1.5	28
27	Lithium-ion intercalation and deintercalation behaviors of graphitized carbon nanospheres. Journal of Materials Chemistry A, 2018, 6, 1128-1137.	5.2	28
28	Chargeâ€Transfer Kinetics of The Solidâ€Electrolyte Interphase on Li ₄ Ti ₅ O ₁₂ Thinâ€Film Electrodes. ChemSusChem, 2020, 13, 4041-4050.	3.6	28
29	Ion Transport in Organic Electrolyte Solution through the Pore Channels of Anodic Nanoporous Alumina Membranes. Electrochimica Acta, 2016, 199, 380-387.	2.6	27
30	In Situ Measurement of Local pH at Working Electrodes in Neutral pH Solutions by the Rotating Ringâ€Đisk Electrode Technique. ChemElectroChem, 2019, 6, 4750-4756.	1.7	27
31	Investigation of Electrochemical Sodium-Ion Intercalation Behavior into Graphite-Based Electrodes. Journal of the Electrochemical Society, 2019, 166, A5323-A5327.	1.3	27
32	Structural insights into ion conduction of layered double hydroxides with various proportions of trivalent cations. Journal of Materials Chemistry A, 2013, 1, 14569.	5.2	25
33	Influence of surfactants as additives to electrolyte solutions on zinc electrodeposition and potential oscillation behavior. Journal of Applied Electrochemistry, 2016, 46, 1067-1073.	1.5	24
34	Influence of carbonaceous materials on electronic conduction in electrode-slurry. Carbon, 2017, 122, 202-206.	5.4	23
35	In situ Raman investigation of electrolyte solutions in the vicinity of graphite negative electrodes. Physical Chemistry Chemical Physics, 2016, 18, 27486-27492.	1.3	22
36	Strontium cobalt oxychlorides: enhanced electrocatalysts for oxygen reduction and evolution reactions. Chemical Communications, 2017, 53, 2713-2716.	2.2	22

#	Article	IF	CITATIONS
37	Permeation of Polymethoxyflavones into the Mouse Brain and Their Effect on MK-801-Induced Locomotive Hyperactivity. International Journal of Molecular Sciences, 2017, 18, 489.	1.8	22
38	Lithium-Ion Transfer at the Interface between High Potential Negative Electrodes and Ionic Liquids. Journal of the Electrochemical Society, 2014, 161, A1939-A1942.	1.3	21
39	Investigation of Electronic Resistance in Lithium-Ion Batteries by AC Impedance Spectroscopy. Journal of the Electrochemical Society, 2017, 164, A3862-A3867.	1.3	20
40	Electro-oxidation of Methanol on Gold Nanoparticles Supported on Ptâ^•MoO[sub x]â^•C. Journal of the Electrochemical Society, 2005, 152, A1870.	1.3	19
41	Electrochemical lithium ion intercalation into graphite electrode in propylene carbonate-based electrolytes with dimethyl carbonate and calcium salt. Journal of Power Sources, 2013, 238, 65-68.	4.0	19
42	Influence of Surface Orientation on the Catalytic Activities of La 0.8 Sr 0.2 CoO 3 Crystal Electrodes for Oxygen Reduction and Evolution Reactions. ChemElectroChem, 2016, 3, 214-217.	1.7	18
43	Implications of Testing a Zinc–Oxygen Battery with Zinc Foil Anode Revealed by Operando Gas Analysis. ACS Omega, 2020, 5, 626-633.	1.6	17
44	A tubulointerstitial nephritis antigen gene defect causes childhood-onset chronic renal failure. Pediatric Nephrology, 2010, 25, 1349-1353.	0.9	16
45	In situ Raman spectroscopic analysis of solvent co-intercalation behavior into a solid electrolyte interphase-covered graphite electrode. Journal of Applied Electrochemistry, 2019, 49, 639-646.	1.5	16
46	<i>In Situ</i> Local pH Measurements with Hydrated Iridium Oxide Ring Electrodes in Neutral pH Aqueous Solutions. Chemistry Letters, 2020, 49, 195-198.	0.7	16
47	Surface Modification of Graphitized Carbonaceous Thin-Film Electrodes with Silver for Enhancement of Interfacial Lithium-Ion Transfer. Journal of Physical Chemistry C, 2012, 116, 12422-12425.	1.5	15
48	Hierarchically porous monoliths of oxygen-deficient anatase TiO2â^'x with electronic conductivity. RSC Advances, 2013, 3, 7205.	1.7	15
49	Electrochemical preparation of a lithium–graphite-intercalation compound in a dimethyl sulfoxide-based electrolyte containing calcium ions. Carbon, 2013, 57, 232-238.	5.4	15
50	Suppression of Co-Intercalation Reaction of Propylene Carbonate and Lithium Ion into Graphite Negative Electrode by Addition of Diglyme. Journal of the Electrochemical Society, 2016, 163, A1265-A1269.	1.3	15
51	Insight into the state of the ZrO2 coating on a LiCoO2 thin-film electrode using the ferrocene redox reaction. Journal of Applied Electrochemistry, 2017, 47, 1203-1211.	1.5	15
52	Mechanism of the Loss of Capacity of LiNiO ₂ Electrodes for Use in Aqueous Li-Ion Batteries: Unveiling a Fundamental Cause of Deterioration in an Aqueous Electrolyte through <i>In Situ</i> Raman Observation. ACS Applied Materials & Interfaces, 2020, 12, 56076-56085.	4.0	15
53	Dual-Site Catalysis of Fe-Incorporated Oxychlorides as Oxygen Evolution Electrocatalysts. Chemistry of Materials, 2020, 32, 8195-8202.	3.2	15
54	Cathodeâ€Electrolyteâ€Interphase Film Formation on a LiNiO ₂ Surface in Conventional Aqueous Electrolytes: Simple Method to Improve the Electrochemical Performance of LiNiO ₂ Electrodes for Use in Aqueous Liâ€Ion Batteries. Advanced Energy Materials, 2021, 11, 2100756.	10.2	15

#	Article	IF	CITATIONS
55	Investigations of Electrochemically Active Regions in Bifunctional Air Electrodes Using Partially Immersed Platinum Electrodes. Journal of the Electrochemical Society, 2015, 162, A1646-A1653.	1.3	14
56	Electrochemical effect of gold nanoparticles on Pt/α-Fe2O3/C for use in methanol oxidation in alkaline solution. Electrochimica Acta, 2007, 52, 3582-3587.	2.6	13
57	Aminated Perfluorosulfonic Acid Ionomers to Improve the Triple Phase Boundary Region in Anion-Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 2010, 157, A1153.	1.3	13
58	Effect of the Addition of Bivalent Ions on Electrochemical Lithium-Ion Intercalation at Graphite Electrodes. Journal of the Electrochemical Society, 2016, 163, A1693-A1696.	1.3	12
59	Development of New Electronic Conductivity Measurement Method for Lithium-ion Battery Electrode–Slurry. Chemistry Letters, 2017, 46, 892-894.	0.7	12
60	In Situ AFM Observation of Surface Morphology of Highly Oriented Pyrolytic Graphite in Propylene Carbonate-Based Electrolyte Solutions Containing Lithium and Bivalent Cations. Journal of the Electrochemical Society, 2017, 164, A48-A53.	1.3	12
61	What insertion species is electrochemically intercalated into the LiNiO2 electrode in aqueous solutions?. Journal of Power Sources, 2020, 477, 229036.	4.0	11
62	Lithium-ion Transfer Kinetics through Solid Electrolyte Interphase on Graphite Electrodes. Electrochemistry, 2020, 88, 69-73.	0.6	11
63	Lactone Formation on Carbonaceous Materials during Electrochemical Oxidation. Chemistry Letters, 2009, 38, 788-789.	0.7	10
64	Lithium-ion Transfer at the Interface between Solid and Liquid Electrolytes under Applying DC Voltage. Chemistry Letters, 2010, 39, 826-827.	0.7	10
65	Electrocatalysts and Triple-Phase Boundary for Anion-Exchange Membrane Fuel Cells. Electrochemistry, 2014, 82, 730-735.	0.6	10
66	Investigation of the Surface State of LiCoO2Thin-Film Electrodes Using a Redox Reaction of Ferrocene. Journal of the Electrochemical Society, 2017, 164, A555-A559.	1.3	10
67	Direct measurements of local current distributions on electrodes covered with thin liquid electrolyte films. Electrochemistry Communications, 2017, 84, 53-56.	2.3	10
68	Electrochemical Lithiation/Delithiation of ZnO in 3D-Structured Electrodes: Elucidating the Mechanism and the Solid Electrolyte Interphase Formation. ACS Applied Materials & Interfaces, 2021, 13, 35625-35638.	4.0	10
69	Kinetic properties of sodium-ion transfer at the interface between graphitic materials and organic electrolyte solutions. Journal of Applied Electrochemistry, 2021, 51, 629-638.	1.5	9
70	Novel Graphitised Carbonaceous Materials for Use as a Highly Corrosionâ€Tolerant Catalyst Support in Polymer Electrolyte Fuel Cells. Fuel Cells, 2010, 10, 960-965.	1,5	8
71	Electrochemical properties of surface-modified hard carbon electrodes for lithium-ion batteries. Electrochimica Acta, 2021, 379, 138175.	2.6	8
72	Bifunctional Oxygen Electrodes with Highly Step-Enriched Surface of Fe–N _{<i>x</i>} Containing Carbonaceous Thin Film. Journal of the Electrochemical Society, 2020, 167, 060504.	1.3	8

#	Article	IF	CITATIONS
73	Formation of "fuzzy―phases with high proton conductivities in the composites of polyphosphoric acid and metal oxide nanoparticles. Physical Chemistry Chemical Physics, 2012, 14, 11135.	1.3	7
74	Solid electrolyte interphase formation in propylene carbonate-based electrolyte solutions for lithium-ion batteries based on the Lewis basicity of the co-solvent and counter anion. Journal of Applied Electrochemistry, 2016, 46, 1099-1107.	1.5	7
75	Investigation on Surface-Film Formation Behavior of LiMn2 O4 Thin-Film Electrodes in LiClO4 /Propylene Carbonate. ChemistrySelect, 2017, 2, 2895-2900.	0.7	7
76	Relation between Mixing Processes and Properties of Lithium-ion Battery Electrode-slurry. Electrochemistry, 2021, 89, 585-589.	0.6	7
77	Alkali Metal Ion Insertion and Extraction on Non-Graphitizable Carbon with Closed Pore Structures. Journal of the Electrochemical Society, 2021, 168, 070508.	1.3	7
78	lon-solvent interaction for lithium-ion transfer at the interface between carbonaceous thin-film electrode and electrolyte. Tanso, 2010, 2010, 188-191.	0.1	7
79	Fluoride Ion-Selective Electrode for Organic Solutions. Analytical Chemistry, 2021, 93, 15058-15062.	3.2	7
80	Electrochemical properties of Ni-rich LiNi Co Mn O2 materials for use in aqueous lithium-ion batteries: How do they differ from those in non-aqueous systems?. Journal of Power Sources, 2022, 524, 231081.	4.0	7
81	Lithium-Ion Intercalation by Calcium-Ion Addition in Propylene Carbonate-Trimethyl Phosphate Electrolyte Solution. Journal of the Electrochemical Society, 2018, 165, A349-A354.	1.3	6
82	Nanoscopic Combination of Edge and Flat Planes in the Active Site for Oxygen Reduction and Evolution. European Journal of Inorganic Chemistry, 2019, 2019, 4117-4121.	1.0	6
83	Effects of a Solid Solution Outer Layer of TiO ₂ on the Surface and Electrochemical Properties of LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ Cathodes for Lithium-Ion Batteries through the Use of Thin-Film Electrodes. ACS Applied Energy Materials, 0, , .	2.5	6
84	Influence of Supporting Materials on Catalytic Activities of Gold Nanoparticles as CO-Tolerant Catalysts in DMFC. Electrochemistry, 2007, 75, 217-220.	0.6	5
85	Acceptor-type hydroxide graphite intercalation compounds electrochemically formed in high ionic strength solutions. Chemical Communications, 2017, 53, 10034-10037.	2.2	5
86	Characterization of the Interface between LiMn ₂ O ₄ Thin-film Electrode and LiBOB-based Electrolyte Solution by Redox Reaction of Ferrocene. Electrochemistry, 2018, 86, 254-259.	0.6	5
87	Reproducible and stable cycling performance data on secondary zinc oxygen batteries. Scientific Data, 2020, 7, 395.	2.4	5
88	Electrochemical Surface Analysis of LiMn ₂ O ₄ Thin-film Electrodes in LiPF ₆ /Propylene Carbonate at Room and Elevated Temperatures. Electrochemistry, 2021, 89, 19-24.	0.6	5
89	Effect of Electrolyte Additives on Kinetic Parameters of Lithium-ion Transfer Reactions at Electrolyte/Graphite Interface. Electrochemistry, 2020, 88, 365-368.	0.6	5
90	Functional Role of Aramid Coated Separator for Dendrite Suppression in Lithium-Ion Batteries. Journal of the Electrochemical Society, 2022, 169, 010536.	1.3	5

#	Article	IF	CITATIONS
91	Effects of Addition of Layered Double Hydroxide to Air Electrodes for Metal-Air Batteries. Electrochemistry, 2012, 80, 728-730.	0.6	4
92	Electrochemical Performances of Zinc Oxide Electrodes Coated with Layered Double Hydroxides in Alkaline Solutions. Chemistry Letters, 2015, 44, 1359-1361.	0.7	4
93	Electrochemical Behavior of Spinel Lithium Titanate in Ionic Liquid/Water Bilayer Electrolyte. Journal of the Electrochemical Society, 2016, 163, A2497-A2500.	1.3	4
94	Electrochemical Behavior of Graphitized Carbon Nanospheres in a Propylene Carbonate-Based Electrolyte Solution. Journal of the Electrochemical Society, 2018, 165, A2247-A2254.	1.3	4
95	Concentrated Sodium Bis(fluorosulfonyl)amide Aqueous Electrolyte Solutions for Electric Double-layer Capacitors. Electrochemistry, 2020, 88, 91-93.	0.6	4
96	Sodium/Lithium-Ion Transfer Reaction at the Interface between Low-Crystallized Carbon Nanosphere Electrodes and Organic Electrolytes. ACS Omega, 2021, 6, 18737-18744.	1.6	4
97	Stabilizing the Nanosurface of LiNiO ₂ Electrodes by Varying the Electrolyte Concentration: Correlation with Initial Electrochemical Behaviors for Use in Aqueous Li-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 44284-44293.	4.0	4
98	Cyclosporine A causes maturation failure in embryonic-type glomeruli persisting after birth. Journal of Nephrology, 2011, 24, 474-481.	0.9	4
99	A Patient With Henoch-Schönlein Purpura Manifesting Unusual Symptoms and Clinical Course. Journal of Clinical Rheumatology, 2010, 16, 338-340.	0.5	3
100	Investigation of the Surface Film Forming Process on Nongraphitizable Carbon Electrodes by In-situ Atomic Force Microscopy. Electrochemistry, 2016, 84, 769-771.	0.6	3
101	Sodium-ion Intercalation Behavior of Graphitized Carbon Nanospheres Covered with Basal Plane. Chemistry Letters, 2019, 48, 799-801.	0.7	3
102	Solvated Lithium Ion Intercalation Behavior of Graphitized Carbon Nanospheres. Electrochemistry, 2020, 88, 79-82.	0.6	3
103	<i>Operando</i> analysis of graphite intercalation compounds with fluoride-containing polyatomic anions in aqueous solutions. Materials Advances, 2021, 2, 2310-2317.	2.6	3
104	Molecular Structural Influence of Glymes on Co-Intercalation Behavior of Solvated Li ⁺ in Graphite Electrodes. Journal of the Electrochemical Society, 2021, 168, 060525.	1.3	3
105	LiNi _{0.5} Mn _{1.5} O ₄ Cathode Materials Co-Doped with La ³⁺ and S ^{2â^} for Use in Lithium-Ion Batteries. Electrochemistry, 2022, 90, 017010-017010.	0.6	3
106	Kinetics of Interfacial Lithium-ion Transfer between a Graphite Negative Electrode and a Li ₂ S-P ₂ S ₅ Glassy Solid Electrolyte. Electrochemistry, 2022, 90, 037003-037003.	0.6	3
107	Influences of metal oxides on carbon corrosion under imposed electrochemical potential conditions. Carbon, 2012, 50, 1644-1649.	5.4	2
108	Fabrication of Step-edge-decorated Graphite Electrodes with Platinum and Their Electrocatalytic Activities. Chemistry Letters, 2013, 42, 606-608.	0.7	2

#	Article	IF	CITATIONS
109	Influence of Concentrations of LiNO ₃ Aqueous Electrolytes on Initial Electrochemical Properties of LiNiO ₂ Electrodes. Chemistry Letters, 2021, 50, 1071-1074.	0.7	2
110	Influence of Chemical Operation on the Electrocatalytic Activity of Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3â^´l´} for the Oxygen Evolution Reaction. Journal of the Electrochemical Society, 2022, 169, 010518.	1.3	2
111	Impact of Hydrogen Peroxide on Carbon Corrosion in Aqueous KOH Solution. Electrochemistry, 2022, 90, 017011-017011.	0.6	2
112	Dendrite Growth of Lithium through Separator Using In Situ Measurement Technique. Journal of the Electrochemical Society, 0, , .	1.3	2
113	Effects of Solvation Structures on the Co-intercalation Suppression Ability of the Solid Electrolyte Interphase Formed on Graphite Electrodes. Chemistry Letters, 2022, 51, 618-621.	0.7	2
114	Local Current Distributions on Electrodes Covered with Anion-exchange Films. Chemistry Letters, 2018, 47, 171-174.	0.7	1
115	Chargeâ€Transfer Kinetics of the Solid–Electrolyte Interphase on Li 4 Ti 5 O 12 Thinâ€Film Electrodes. ChemSusChem, 2020, 13, 3944-3944.	3.6	1
116	Reaction analysis of aqueous-based energy storage devices with electrode modeling. Review of Polarography, 2021, 67, 19-24.	0.0	1
117	Complementary Actions of Tungsten Oxides and Carbon to Catalyze the Redox Reaction of VO2+/VO2+ in Vanadium Redox Flow Batteries. ChemElectroChem, 2021, 8, 3695.	1.7	1
118	Degradation phenomena of carbonaceous materials in polymer electrolyte fuel cells. Tanso, 2012, 2012, 18-25.	0.1	1
119	Electrochemical behaviors of carbonaceous materials in alkaline aqueous solutions. Tanso, 2018, 2018, 118-123.	0.1	1
120	Black Phosphorus-Graphite Material Composites with a Low Activation Energy of Interfacial Conductivity. Electrochemistry, 2022, 90, .	0.6	1
121	Reciprocal Sum Expression for Steady-state Kinetics. —Enzyme Reactions and Voltammetry—. Electrochemistry, 2022, , .	0.6	1
122	Improvement of Electrochemical Stability of Carbonaceous Materials for Fuel Cells by Using Metal Oxide Deposition. ECS Meeting Abstracts, 2009, , .	0.0	0
123	3.亜鉛–空気二次電æ±. Electrochemistry, 2014, 82, 181-185.	0.6	0
124	Components. , 2021, , 11-21.		0
125	Liâ€lon Batteries: Cathodeâ€Electrolyteâ€lnterphase Film Formation on a LiNiO ₂ Surface in Conventional Aqueous Electrolytes: Simple Method to Improve the Electrochemical Performance of LiNiO ₂ Electrodes for Use in Aqueous Liâ€lon Batteries (Adv. Energy Mater. 25/2021). Advanced Energy Materials. 2021. 11. 2170094.	10.2	0
126	Electrochemical properties of carbon nanofibers as the negative electrode in lithium-ion batteries. Tanso, 2013, 2013, 52-56.	0.1	0

#	Article	IF	CITATIONS
127	Local Reactions in Bifunctional Air Electrodes for Aqueous Metal-Air Secondary Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
128	(Invited) Evaluation of Reaction Sites of Graphite Electrode. ECS Meeting Abstracts, 2019, , .	0.0	0
129	Origin of the Electrochemical Stability of Aqueous Concentrated Electrolyte Solutions. ECS Meeting Abstracts, 2019, , .	0.0	0
130	Surface-Modified Li4Ti5O12 in Highly Concentrated Aqueous Solutions for Use in Aqueous Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 2020, 167, 120512.	1.3	0
131	Interfacial lithium-ion transfer between the graphite negative electrode and the electrolyte solution. Tanso, 2020, 2020, 9-14.	0.1	0
132	Electrochemical Performance of Nanorod-like (La, Zr) Co-Doped Li-rich Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ Cathodes for Use in Lithium-Ion Batteries. Electrochemistry, 2022, 90, 017008-017008.	0.6	0
133	Study on the Analysis of the Current-potential Curve of RDE in Electrocatalytic Reactions. Review of Polarography, 2020, 66, 77-84.	0.0	0
134	In Situ Measurement of Local pH at Working Electrodes in Neutral pH Solutions By the Rotating Ringâ€Disk Electrode Technique. ECS Meeting Abstracts, 2020, MA2020-02, 2843-2843.	0.0	0
135	Sodium-Ion Transfer Reaction at the Interface between Carbon Nanosphere Electrodes and Electrolytes. ECS Meeting Abstracts, 2020, MA2020-02, 759-759.	0.0	0
136	Oxygen Electrocatalysis on Mixed-Anion Perovskite Compounds in Alkaline Media. ECS Meeting Abstracts, 2020, MA2020-02, 476-476.	0.0	0