Gregorio Iglesias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8482971/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Climate change impacts on wind energy resources in North America based on the CMIP6 projections. Science of the Total Environment, 2022, 806, 150580.	3.9	38
2	Sea level rise changes estuarine tidal stream energy. Energy, 2022, 239, 122428.	4.5	12
3	Mapping of the levelised cost of energy for floating offshore wind in the European Atlantic. Renewable and Sustainable Energy Reviews, 2022, 154, 111889.	8.2	63
4	Tidal stream energy potential in the Shannon Estuary. Renewable Energy, 2022, 185, 61-74.	4.3	15
5	A combined approach to cliff characterization: Cliff Stability index. Marine Geology, 2022, 444, 106706.	0.9	2
6	Sea level rise will change estuarine tidal energy: A review. Renewable and Sustainable Energy Reviews, 2022, 156, 111855.	8.2	34
7	Application of Marine Spatial Planning tools for tidal stream farm micro-siting. Ocean and Coastal Management, 2022, 220, 106063.	2.0	3
8	Machine learning methods for damage detection of thermoplastic composite pipes under noise conditions. Ocean Engineering, 2022, 248, 110817.	1.9	9
9	Optimized hybrid ensemble technique for CMIP6 wind data projections under different climate-change scenarios. Case study: United Kingdom. Science of the Total Environment, 2022, 826, 154124.	3.9	15
10	A holistic methodology for hydrokinetic energy site selection. Applied Energy, 2022, 317, 119155.	5.1	5
11	Site selection of floating offshore wind through the levelised cost of energy: A case study in Ireland. Energy Conversion and Management, 2022, 266, 115802.	4.4	23
12	A data-driven long-term metocean data forecasting approach for the design of marine renewable energy systems. Renewable and Sustainable Energy Reviews, 2022, 167, 112751.	8.2	21
13	Evaluation of the structural complexity of organisations and products in naval-shipbuilding projects. Ships and Offshore Structures, 2021, 16, 670-685.	0.9	6
14	Wave power extraction from a hybrid oscillating water column-oscillating buoy wave energy converter. Renewable and Sustainable Energy Reviews, 2021, 135, 110234.	8.2	32
15	Physical Modelling of the Effect on the Wave Field of the WaveCat Wave Energy Converter. Journal of Marine Science and Engineering, 2021, 9, 309.	1.2	5
16	Design Selection and Geometry in OWC Wave Energy Converters for Performance. Energies, 2021, 14, 1707.	1.6	7
17	Wind resource evolution in Europe under different scenarios of climate change characterised by the novel Shared Socioeconomic Pathways. Energy Conversion and Management, 2021, 234, 113961.	4.4	40
18	Nonlinear hydrodynamic modeling of an offshore stationary multi-oscillating water column platform. Ocean Engineering, 2021, 227, 108919.	1.9	15

#	Article	IF	CITATIONS
19	Downscaling wave energy converters for optimum performance in low-energy seas. Renewable Energy, 2021, 168, 705-722.	4.3	17
20	The power flow and the wave energy flux at an operational wave farm: Findings from Mutriku, Bay of Biscay. Ocean Engineering, 2021, 227, 108654.	1.9	9
21	Performance of a plateâ€wave energy converter integrated in a floating breakwater. IET Renewable Power Generation, 2021, 15, 3206-3219.	1.7	20
22	Dynamic Loads and Response of a Spar Buoy Wind Turbine with Pitch-Controlled Rotating Blades: An Experimental Study. Energies, 2021, 14, 3598.	1.6	15
23	Combining methodologies on the impact of inter and intra-annual variation of wave energy on selection of suitable location and technology. Renewable Energy, 2021, 172, 697-713.	4.3	15
24	Parametric study and optimization of a twoâ€body wave energy converter. IET Renewable Power Generation, 2021, 15, 3319-3330.	1.7	5
25	Multi-parameter analysis and mapping of the levelised cost of energy from floating offshore wind in the Mediterranean Sea. Energy Conversion and Management, 2021, 243, 114416.	4.4	31
26	Damage detection for offshore structures using long and short-term memory networks and random decrement technique. Ocean Engineering, 2021, 235, 109388.	1.9	17
27	Compact floating wave energy converter arrays: Inter-device mooring connectivity and performance. Applied Ocean Research, 2021, 115, 102820.	1.8	8
28	Experimental and numerical determination of the optimum configuration of a parabolic wave extinction system for flumes. Ocean Engineering, 2021, 238, 109748.	1.9	5
29	A new framework and tool for ecological risk assessment of wave energy converters projects. Renewable and Sustainable Energy Reviews, 2021, 151, 111539.	8.2	14
30	Numerical Modelling of a Floating Wind Turbine Semi-Submersible Platform. Applied Sciences (Switzerland), 2021, 11, 11270.	1.3	5
31	Sensitivity of OWC performance to air compressibility. Renewable Energy, 2020, 145, 1334-1347.	4.3	43
32	Wave diffraction from multiple truncated cylinders of arbitrary cross sections. Applied Mathematical Modelling, 2020, 77, 1425-1445.	2.2	14
33	The influence of dredging for locating a tidal stream energy farm. Renewable Energy, 2020, 146, 242-253.	4.3	6
34	Design catalogue for eco-engineering of coastal artificial structures: a multifunctional approach for stakeholders and end-users. Urban Ecosystems, 2020, 23, 431-443.	1.1	75
35	Wave scattering by a floating porous elastic plate of arbitrary shape: A semi-analytical study. Journal of Fluids and Structures, 2020, 92, 102827.	1.5	42
36	Wave power extraction from a tubular structure integrated oscillating water column. Renewable Energy, 2020, 150, 342-355.	4.3	36

#	Article	IF	CITATIONS
37	Signal denoising method for modal analysis of an offshore platform. Journal of Loss Prevention in the Process Industries, 2020, 63, 104000.	1.7	7
38	Wave exploitability index and wave resource classification. Renewable and Sustainable Energy Reviews, 2020, 134, 110393.	8.2	38
39	Hydroelastic interaction between water waves and an array of circular floating porous elastic plates. Journal of Fluid Mechanics, 2020, 900, .	1.4	41
40	Multi-criteria characterization and mapping of coastal cliff environments: A case study in NW Spain. Science of the Total Environment, 2020, 746, 140942.	3.9	4
41	Combined Floating Offshore Wind and Solar PV. Journal of Marine Science and Engineering, 2020, 8, 576.	1.2	70
42	Coastal cliff exposure and management. Ocean and Coastal Management, 2020, 198, 105387.	2.0	4
43	Coastal infrastructure operativity against flooding – A methodology. Science of the Total Environment, 2020, 719, 137452.	3.9	8
44	Hydrodynamic performance of a multi-Oscillating Water Column (OWC) platform. Applied Ocean Research, 2020, 99, 102168.	1.8	33
45	Power capture performance of hybrid wave farms combining different wave energy conversion technologies: The H-factor. Energy, 2020, 204, 117920.	4.5	21
46	Numerical analysis of shipping water impacting a step structure. Ocean Engineering, 2020, 209, 107517.	1.9	15
47	Intra-annual variability in the performance of an oscillating water column wave energy converter. Energy Conversion and Management, 2020, 207, 112536.	4.4	18
48	Concept and performance of a novel wave energy converter: Variable Aperture Point-Absorber (VAPA). Renewable Energy, 2020, 153, 681-700.	4.3	16
49	Water-wave interaction with submerged porous elastic disks. Physics of Fluids, 2020, 32, .	1.6	44
50	Wave Energy Converter Configuration for Coastal Erosion Mitigation. SpringerBriefs in Energy, 2020, , 29-43.	0.2	0
51	Wave Energy Converter Configuration for Coastal Flooding Mitigation. SpringerBriefs in Energy, 2020, , 45-57.	0.2	Ο
52	Optimization of Wave Farm Location and Layout for Coastal Protection. SpringerBriefs in Energy, 2020, , 9-27.	0.2	0
53	Management of Coastal Erosion Under Climate Change Through Wave Farms. SpringerBriefs in Energy, 2020, , 59-73.	0.2	0
54	Technological and commercial comparison of OWC and SSG wave energy converters built into breakwaters. , 2020, , 167-178.		0

#	Article	IF	CITATIONS
55	An artificial neural network model of coastal erosion mitigation through wave farms. Environmental Modelling and Software, 2019, 119, 390-399.	1.9	23
56	A numerical and experimental investigation of the effect of side walls on hydrodynamic model testing in a wave flume. Ocean Engineering, 2019, 186, 106108.	1.9	10
57	Power extraction in regular and random waves from an OWC in hybrid wind-wave energy systems. Ocean Engineering, 2019, 191, 106519.	1.9	52
58	Monopile-mounted wave energy converter for a hybrid wind-wave system. Energy Conversion and Management, 2019, 199, 111971.	4.4	59
59	Wave power extraction from multiple oscillating water columns along a straight coast. Journal of Fluid Mechanics, 2019, 878, 445-480.	1.4	119
60	Experimental study of wave loads on a small vehicle in close proximity to a large vessel. Applied Ocean Research, 2019, 83, 77-87.	1.8	6
61	Wave radiation from a truncated cylinder of arbitrary cross section. Ocean Engineering, 2019, 173, 519-530.	1.9	19
62	Hydrokinetic energy exploitation under combined river and tidal flow. Renewable Energy, 2019, 143, 558-568.	4.3	20
63	Site-specific wave energy conversion performance of an oscillating water column device. Energy Conversion and Management, 2019, 195, 457-465.	4.4	28
64	Wave radiation from multiple cylinders of arbitrary cross sections. Ocean Engineering, 2019, 184, 11-22.	1.9	13
65	Hydrodynamic performance of a pile-supported OWC breakwater: An analytical study. Applied Ocean Research, 2019, 88, 326-340.	1.8	84
66	Coast/breakwater-integrated OWC: A theoretical model. Marine Structures, 2019, 66, 121-135.	1.6	86
67	Wave energy converter geometry for coastal flooding mitigation. Science of the Total Environment, 2019, 668, 1232-1241.	3.9	22
68	Dual wave farms for energy production and coastal protection under sea level rise. Journal of Cleaner Production, 2019, 222, 364-372.	4.6	28
69	Wave energy converter configuration in dual wave farms. Ocean Engineering, 2019, 178, 204-214.	1.9	17
70	Dual wave farms and coastline dynamics: The role of inter-device spacing. Science of the Total Environment, 2019, 646, 1241-1252.	3.9	35
71	Wave farm impacts on coastal flooding under sea-level rise: A case study in southern Spain. Science of the Total Environment, 2019, 653, 1522-1531.	3.9	33
72	Complexity and Project Management: Challenges, Opportunities, and Future Research. Complexity, 2019, 2019, 1-2.	0.9	8

#	Article	IF	CITATIONS
73	Wave farm planning through high-resolution resource and performance characterization. Renewable Energy, 2019, 135, 1097-1107.	4.3	21
74	Structure Design and Assessment of a Floating Foundation for Offshore Wind Turbines. , 2019, , .		0
75	Tidal stream resource characterisation in progressive versus standing wave systems. Applied Energy, 2018, 220, 274-285.	5.1	24
76	Dual wave farms for energy production and coastal protection. Ocean and Coastal Management, 2018, 160, 18-29.	2.0	46
77	Assessment of renewable energy resources in Iran; with a focus on wave and tidal energy. Renewable and Sustainable Energy Reviews, 2018, 81, 2992-3005.	8.2	86
78	Wave energy status in Asia. Ocean Engineering, 2018, 169, 344-358.	1.9	51
79	Wave–structure interaction in hybrid wave farms. Journal of Fluids and Structures, 2018, 83, 386-412.	1.5	37
80	Complexity and Project Management: A General Overview. Complexity, 2018, 2018, 1-10.	0.9	53
81	Proof of Concept of a Novel Hybrid Wind-Wave Energy Converter. , 2018, , .		3
82	Co-located wave-wind farms for improved O&M efficiency. Ocean and Coastal Management, 2018, 163, 66-71.	2.0	18
83	Wave farm effects on the coast: The alongshore position. Science of the Total Environment, 2018, 640-641, 1176-1186.	3.9	38
84	A Novel Hybrid Wind-Wave Energy Converter for Jacket-Frame Substructures. Energies, 2018, 11, 637.	1.6	51
85	Protection of gravel-dominated coasts through wave farms: Layout and shoreline evolution. Science of the Total Environment, 2018, 636, 1541-1552.	3.9	33
86	Hydrodynamic response of the WEC sub-system of a novel hybrid wind-wave energy converter. Energy Conversion and Management, 2018, 171, 307-325.	4.4	65
87	A method for the spatial targeting of tidal stream energy policies. International Marine Energy Journal, 2018, 1, 19-26.	0.4	Ο
88	The collocation feasibility index – A method for selecting sites for co-located wave and wind farms. Renewable Energy, 2017, 103, 811-824.	4.3	28
89	An integrated approach for the planning of dredging operations in estuaries. Ocean Engineering, 2017, 140, 73-83.	1.9	16
90	An integrated approach for the installation of a wave farm. Energy, 2017, 138, 910-919.	4.5	11

#	Article	IF	CITATIONS
91	Wave Power: Climate Change Mitigation and Adaptation. , 2017, , 2007-2055.		1
92	ENHANCING MARINE ENERGY COMPETITIVENESS: CO-LOCATED OFFSHORE WIND AND WAVE ENERGY FARMS. Coastal Engineering Proceedings, 2017, , 4.	0.1	1
93	A HOLISTIC METHOD TO SELECT TIDAL STREAM ENERGY HOTSPOTS. Coastal Engineering Proceedings, 2017, , 5.	0.1	0
94	Laboratory Tests in the Development of WaveCat. Sustainability, 2016, 8, 1339.	1.6	20
95	Selecting optimum locations for co-located wave and wind energy farms. Part II: A case study. Energy Conversion and Management, 2016, 122, 599-608.	4.4	54
96	Hybrid wave and offshore wind farms: A comparative case study of co-located layouts. International Journal of Marine Energy, 2016, 15, 2-16.	1.8	25
97	Capital costs in tidal stream energy projects – A spatial approach. Energy, 2016, 107, 215-226.	4.5	38
98	Co-located wind and wave energy farms: Uniformly distributed arrays. Energy, 2016, 113, 497-508.	4.5	30
99	Impacts of port development on estuarine morphodynamics: Ribadeo (Spain). Ocean and Coastal Management, 2016, 130, 58-72.	2.0	28
100	The turbulent wake of a monopile foundation. Renewable Energy, 2016, 93, 180-187.	4.3	8
101	Selecting optimum locations for co-located wave and wind energy farms. Part I: The Co-Location Feasibility index. Energy Conversion and Management, 2016, 122, 589-598.	4.4	55
102	Output power smoothing and reduced downtime period by combined wind and wave energy farms. Energy, 2016, 97, 69-81.	4.5	83
103	Characterization of loads on a hemispherical point absorber wave energy converter. International Journal of Marine Energy, 2016, 13, 1-15.	1.8	25
104	A holistic method for selecting tidal stream energy hotspots under technical, economic and functional constraints. Energy Conversion and Management, 2016, 117, 420-430.	4.4	27
105	Grid parity in tidal stream energy projects: An assessment of financial, technological and economic LCOE input parameters. Technological Forecasting and Social Change, 2016, 104, 89-101.	6.2	22
106	Wave energy vs. other energy sources: A reassessment of the economics. International Journal of Green Energy, 2016, 13, 747-755.	2.1	54
107	Holistic performance analysis and turbine-induced damping for an OWC wave energy converter. Renewable Energy, 2016, 85, 1155-1163.	4.3	68

Capital costs in tidal stream energy projects: A site-specific approach. , 2016, , .

2

#	Article	IF	CITATIONS
109	Enhancing marine energy competitiveness: Economic assessment of a co-located wave-wind energy farm. , 2016, , .		0
110	Evaluation and comparison of the levelized cost of tidal, wave, and offshore wind energy. Journal of Renewable and Sustainable Energy, 2015, 7, .	0.8	94
111	A strategic policy framework for promoting the marine energy sector in Spain. Journal of Renewable and Sustainable Energy, 2015, 7, .	0.8	17
112	Preface to Special Topic: Marine Renewable Energy. Journal of Renewable and Sustainable Energy, 2015, 7, .	0.8	33
113	Hindcasting Long Waves in a Port: An ANN Approach. Coastal Engineering Journal, 2015, 57, 1550019-1-1550019-20.	0.7	7
114	LONG WAVES AND ARTIFICIAL NEURAL NETWORKS. Coastal Engineering Proceedings, 2015, 1, 31.	0.1	0
115	WAVE FARM LAYOUT AND COASTAL IMPACTS. Coastal Engineering Proceedings, 2015, 1, 36.	0.1	1
116	Enhancing Wave Energy Competitiveness through Co-Located Wind and Wave Energy Farms. A Review on the Shadow Effect. Energies, 2015, 8, 7344-7366.	1.6	63
117	CO-LOCATED WAVE AND OFFSHORE WIND FARMS: A PRELIMINARY CASE STUDY OF AN HYBRID ARRAY. Coastal Engineering Proceedings, 2015, 1, 33.	0.1	14
118	IMPACT OF TIDAL STREAM ENERGY EXPLOITATION ON ESTUARINE HYDRODYNAMICS. Coastal Engineering Proceedings, 2015, 1, 22.	0.1	1
119	A Hybrid Wave-Wind Offshore Farm for an Island. International Journal of Green Energy, 2015, 12, 570-576.	2.1	28
120	A review of Very Large Floating Structures (VLFS) for coastal and offshore uses. Ocean Engineering, 2015, 109, 677-690.	1.9	165
121	Public perceptions and externalities in tidal stream energy: A valuation for policy making. Ocean and Coastal Management, 2015, 105, 15-24.	2.0	27
122	Intra-annual wave resource characterization for energy exploitation: A new decision-aid tool. Energy Conversion and Management, 2015, 93, 1-8.	4.4	42
123	Wave farm impact on beach modal state. Marine Geology, 2015, 361, 126-135.	0.9	44
124	The economics of wave energy: A review. Renewable and Sustainable Energy Reviews, 2015, 45, 397-408.	8.2	331
125	Performance of OWC wave energy converters: influence of turbine damping and tidal variability. International Journal of Energy Research, 2015, 39, 472-483.	2.2	100
126	Improving wind farm accessibility for operation & maintenance through a co-located wave farm: Influence of layout and wave climate. Energy Conversion and Management, 2015, 95, 229-241.	4.4	62

#	Article	IF	CITATIONS
127	Genetic programming and floating boom performance. Ocean Engineering, 2015, 104, 310-318.	1.9	10
128	Co-located wave-wind farms: Economic assessment as a function of layout. Renewable Energy, 2015, 83, 837-849.	4.3	75
129	Non-dimensional analysis for matching an impulse turbine to an OWC (oscillating water column) with an optimum energy transfer. Energy, 2015, 87, 481-489.	4.5	45
130	A proposed wave farm on the Galician coast. Energy Conversion and Management, 2015, 99, 102-111.	4.4	64
131	Hydrodynamic performance of an oscillating water column wave energy converter by means of particle imaging velocimetry. Energy, 2015, 83, 89-103.	4.5	68
132	Device interactions in reducing the cost of tidal stream energy. Energy Conversion and Management, 2015, 97, 428-438.	4.4	31
133	The intra-annual variability in the performance of wave energy converters: A comparative study in N Galicia (Spain). Energy, 2015, 82, 138-146.	4.5	60
134	Towards the optimal design of a co-located wind-wave farm. Energy, 2015, 84, 15-24.	4.5	59
135	LCOE (levelised cost of energy) mapping: A new geospatial tool for tidal stream energy. Energy, 2015, 91, 192-201.	4.5	53
136	Artificial neural networks applied to port operability assessment. Ocean Engineering, 2015, 109, 298-308.	1.9	32
137	Accessibility for operation and maintenance tasks in co-located wind and wave energy farms with non-uniformly distributed arrays. Energy Conversion and Management, 2015, 106, 1219-1229.	4.4	23
138	Co-located wind-wave farm synergies (Operation & Maintenance): A case study. Energy Conversion and Management, 2015, 91, 63-75.	4.4	72
139	On the wave energy resource of Peru. Energy Conversion and Management, 2015, 90, 34-40.	4.4	70
140	Coastal defence using wave farms: The role of farm-to-coast distance. Renewable Energy, 2015, 75, 572-582.	4.3	61
141	A review of combined wave and offshore wind energy. Renewable and Sustainable Energy Reviews, 2015, 42, 141-153.	8.2	449
142	Wave Power - Climate Change Mitigation and Adaptation. , 2015, , 1-49.		1
143	Harnessing tidal currents in an estuary: A comparative impact assessment between different turbine configurations. , 2015, , 637-642.		0
144	Wind Power Viability on a Small Island. International Journal of Green Energy, 2014, 11, 741-760.	2.1	23

#	Article	IF	CITATIONS
145	Evaluation of the production of tidal stream energy in an inlet channel by coupling field data and numerical modelling. Energy, 2014, 71, 104-117.	4.5	27
146	Wave farm impact: The role of farm-to-coast distance. Renewable Energy, 2014, 69, 375-385.	4.3	59
147	Optimisation of turbine-induced damping for an OWC wave energy converter using a RANS–VOF numerical model. Applied Energy, 2014, 127, 105-114.	5.1	199
148	A high resolution geospatial database for wave energy exploitation. Energy, 2014, 68, 572-583.	4.5	48
149	Efficiency of OWC wave energy converters: A virtual laboratory. Applied Ocean Research, 2014, 44, 63-70.	1.8	73
150	Wave and offshore wind energy on an island. Energy for Sustainable Development, 2014, 22, 57-65.	2.0	59
151	Energy production from tidal currents in an estuary: A comparative study of floating and bottom-fixed turbines. Energy, 2014, 77, 802-811.	4.5	37
152	Coastal defence through wave farms. Coastal Engineering, 2014, 91, 299-307.	1.7	81
153	Floating vs. bottom-fixed turbines for tidal stream energy: A comparative impact assessment. Energy, 2014, 72, 691-701.	4.5	31
154	Performance of artificial neural networks in nearshore wave power prediction. Applied Soft Computing Journal, 2014, 23, 194-201.	4.1	46
155	Assessing the optimal location for a shoreline wave energy converter. Applied Energy, 2014, 132, 404-411.	5.1	83
156	Wave farm impact on the beach profile: A case study. Coastal Engineering, 2014, 86, 36-44.	1.7	102
157	A wave farm for an island: Detailed effects on the nearshore wave climate. Energy, 2014, 69, 801-812.	4.5	38
158	Tidal stream energy impact on the transient and residual flow in an estuary: A 3D analysis. Applied Energy, 2014, 116, 167-177.	5.1	50
159	Tidal stream energy impacts on estuarine circulation. Energy Conversion and Management, 2014, 80, 137-149.	4.4	47
160	Long wave effects on a vessel at berth. Applied Ocean Research, 2014, 47, 63-72.	1.8	51
161	Potentials of a hybrid offshore farm for the island of Fuerteventura. Energy Conversion and Management, 2014, 86, 300-308.	4.4	56
162	A port towards energy self-sufficiency using tidal stream power. Energy, 2014, 71, 432-444.	4.5	66

#	Article	IF	CITATIONS
163	Wave farm impact based on realistic wave-WEC interaction. Energy, 2013, 51, 216-229.	4.5	109
164	Wave and offshore wind potential for the island of Tenerife. Energy Conversion and Management, 2013, 76, 738-745.	4.4	80
165	Assessment of the impacts of tidal stream energy through high-resolution numerical modeling. Energy, 2013, 61, 541-554.	4.5	79
166	Artificial Intelligence for estimating infragravity energy in a harbour. Ocean Engineering, 2013, 57, 56-63.	1.9	36
167	Performance assessment of Tidal Stream Turbines: A parametric approach. Energy Conversion and Management, 2013, 69, 49-57.	4.4	71
168	Power peaks against installed capacity in tidal stream energy. IET Renewable Power Generation, 2013, 7, 246-253.	1.7	16
169	Evaluation of the wind resource and power performance of a turbine in Tenerife. Journal of Renewable and Sustainable Energy, 2012, 4, 053106.	0.8	13
170	Long period oscillations and tidal level in the Port of Ferrol. Applied Ocean Research, 2012, 38, 126-134.	1.8	45
171	The TSE index – A new tool for selecting tidal stream sites in depth-limited regions. Renewable Energy, 2012, 48, 350-357.	4.3	57
172	The new wave energy converter WaveCat: Concept and laboratory tests. Marine Structures, 2012, 29, 58-70.	1.6	115
173	A methodology to determine the power performance of wave energy converters at a particular coastal location. Energy Conversion and Management, 2012, 61, 8-18.	4.4	124
174	TURBINEâ^'CHAMBER COUPLING IN AN OWC WAVE ENERGY CONVERTER. Coastal Engineering Proceedings, 2012, 1, 2.	0.1	4
175	OPTIMIZATION OF THE WAVECAT WAVE ENERGY CONVERTER. Coastal Engineering Proceedings, 2012, 1, 5.	0.1	7
176	Can the Seasonality of a Small River Affect a Large Tide-Dominated Estuary? The Case of RÃa de Viveiro, Spain. Journal of Coastal Research, 2011, 277, 1170-1182.	0.1	17
177	Artificial intelligence applied to plane wave reflection at submerged breakwaters. Journal of Hydraulic Research/De Recherches Hydrauliques, 2011, 49, 465-472.	0.7	11
178	Choosing the site for the first wave farm in a region: A case study in the Galician Southwest (Spain). Energy, 2011, 36, 5525-5531.	4.5	104
179	Wave resource in El Hierro—an island towards energy self-sufficiency. Renewable Energy, 2011, 36, 689-698.	4.3	128

180 The WaveCat - Development of A New Wave Energy Converter. , 2011, , .

8

#	Article	IF	CITATIONS
181	PHYSICAL AND NUMERICAL MODELING OF THE WAVECAT© WAVE ENERGY CONVERTER. Coastal Engineering Proceedings, 2011, 1, 64.	0.1	1
182	Alternative Sources of Energy in Shipping. Journal of Navigation, 2010, 63, 435-448.	1.0	16
183	Wave energy resource in the Estaca de Bares area (Spain). Renewable Energy, 2010, 35, 1574-1584.	4.3	142
184	Wave energy and nearshore hot spots: The case of the SE Bay of Biscay. Renewable Energy, 2010, 35, 2490-2500.	4.3	130
185	Floating boom performance under waves and currents. Journal of Hazardous Materials, 2010, 174, 226-235.	6.5	37
186	Artificial intelligence applied to floating boom behavior under waves and currents. Ocean Engineering, 2010, 37, 1513-1521.	1.9	19
187	Effects of high winds on the circulation of the using a mixed open boundary condition: the RÃa de Muros, Spain. Environmental Modelling and Software, 2010, 25, 455-466.	1.9	29
188	Artificial Intelligence and headland-bay beaches. Coastal Engineering, 2010, 57, 176-183.	1.7	17
189	Offshore and inshore wave energy assessment: Asturias (N Spain). Energy, 2010, 35, 1964-1972.	4.5	141
190	Wave power for La Isla Bonita. Energy, 2010, 35, 5013-5021.	4.5	78
191	Residual circulation in the RÃa de Muros (NW Spain): A 3D numerical model study. Journal of Marine Systems, 2009, 75, 116-130.	0.9	41
192	Seasonality of the circulation in the RÃa de Muros (NW Spain). Journal of Marine Systems, 2009, 78, 94-108.	0.9	39
193	Wave energy potential along the Death Coast (Spain). Energy, 2009, 34, 1963-1975.	4.5	158
194	WFD Indicators and Definition of the Ecological Status of Rivers. Water Resources Management, 2009, 23, 2231-2247.	1.9	20
195	Computer vision applied to wave flume measurements. Ocean Engineering, 2009, 36, 1073-1079.	1.9	14
196	Numerical model evaluation of tidal stream energy resources in the RÃa de Muros (NW Spain). Renewable Energy, 2009, 34, 1517-1524.	4.3	153
197	Wave energy potential in Galicia (NW Spain). Renewable Energy, 2009, 34, 2323-2333.	4.3	195
198	Neural network modelling of planform geometry of headland-bay beaches. Geomorphology, 2009, 103, 577-587.	1.1	36

#	Article	IF	CITATIONS
199	Headland-bay beach planform and tidal range: A neural network model. Geomorphology, 2009, 112, 135-143.	1.1	20
200	DEVELOPMENT AND DESIGN OF THE WAVECATâ,,¢ ENERGY CONVERTER. , 2009, , .		3
201	NUMERICAL ANALYSIS OF FLOATING BOOM PERFORMANCE IN OPEN WATERS. , 2009, , .		0
202	A virtual laboratory for stability tests of rubble-mound breakwaters. Ocean Engineering, 2008, 35, 1113-1120.	1.9	24
203	Baroclinic modelling and analysis of tide- and wind-induced circulation in the RÃa de Muros (NW) Tj ETQq1 1 0.7	34314 rgBT	lQverlock 1
204	An engineering approach to wave propagation. Proceedings of the Institution of Civil Engineers Water and Maritime Engineering, 2003, 156, 165-174.	0.3	1