
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8482686/publications.pdf Version: 2024-02-01

ARDIIIAH SENED

#	Article	IF	CITATIONS
1	Sardine protein diet increases plasma glucagon-like peptide-1 levels and prevents tissue oxidative stress in rats fed a high-fructose diet. Molecular Medicine Reports, 2015, 12, 7017-26.	1.1	11
2	Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nature Medicine, 2015, 21, 512-517.	15.2	536
3	Uptake and metabolism of <scp>d</scp> â€glucose in isolated acinar and ductal cells from rat submandibular glands. Cell Biochemistry and Function, 2014, 32, 470-475.	1.4	2
4	Phytochemical screening and free radical scavenging activity of Citrullus colocynthis seeds extracts. Asian Pacific Journal of Tropical Biomedicine, 2013, 3, 35-40.	0.5	73
5	D-glucose- and 3-O-methyl-D-glucose-induced upregulation of selected genes in rat hepatocytes and INS1E cells: Re-evaluation of the possible role of hexose phosphorylation. Molecular Medicine Reports, 2013, 8, 829-836.	1.1	4
6	Uptake and efflux of 3-O-methyl-D-glucose in rat parotid cells. Biomedical Reports, 2013, 1, 638-640.	0.9	1
7	Dietary sardine protein lowers insulin resistance, leptin and TNF-α and beneficially affects adipose tissue oxidative stress in rats with fructose-induced metabolic syndrome. International Journal of Molecular Medicine, 2012, 29, 311-8.	1.8	60
8	Intermittent Fasting Modulation of the Diabetic Syndrome in Streptozotocin-Injected Rats. International Journal of Endocrinology, 2012, 2012, 1-12.	0.6	35
9	Perturbation of glycerol metabolism in hepatocytes from n3-PUFA-depleted rats. International Journal of Molecular Medicine, 2012, 29, 1121-6.	1.8	10
10	The metabolic syndrome of fructose-fed rats: Effects of long-chain polyunsaturated ω3 and ω6 fatty acids. V. Post-mortem findings. Molecular Medicine Reports, 2012, 6, 1399-1403.	1.1	3
11	19F-heptuloses as tools for the non-invasive imaging of GLUT2-expressing cells. Archives of Biochemistry and Biophysics, 2012, 517, 138-143.	1.4	16
12	Heterozygous Inactivation of the Na/Ca Exchanger Increases Glucose-Induced Insulin Release, β-Cell Proliferation, and Mass. Diabetes, 2011, 60, 2076-2085.	0.3	26
13	Intermittent fasting modulation of the diabetic syndrome in sand rats. II. In vivo investigations. International Journal of Molecular Medicine, 2010, 26, 759-65.	1.8	19
14	Intermittent fasting modulation of the diabetic syndrome in sand rats. III. Post-mortem investigations. International Journal of Molecular Medicine, 2010, 27, 95-102.	1.8	13
15	Electrical activity in pancreatic islet cells: The VRAC hypothesis. Islets, 2010, 2, 59-64.	0.9	69
16	Direct effects of eicosapentaenoic and docosahexaenoic acids on phospholipid and triglyceride fatty acid pattern, glucose metabolism, 86rubidium net uptake and insulin release in BRIN-BD11 cells. Endocrine, 2009, 35, 438-448.	1.1	3
17	Expression of the electrogenic Na+–HCO3 â^'-cotransporters NBCe1-A and NBCe1-B in rat pancreatic islet cells. Endocrine, 2009, 35, 449-458.	1.1	17
18	Noninvasive imaging of pancreatic β cells. Nature Reviews Endocrinology, 2009, 5, 394-400.	4.3	30

#	Article	IF	CITATIONS
19	L-glutamine and palmitate catabolism in pancreatic islets from rats depleted in long-chain polyunsaturated I‰3 fatty acids. Cell Biochemistry and Function, 2008, 26, 82-86.	1.4	4
20	Possible role of carbonic anhydrase in rat pancreatic islets: enzymatic, secretory, metabolic, ionic, and electrical aspects. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1624-E1630.	1.8	23
21	Phospholipid fatty acid pattern and d-glucose metabolism in muscles from ω3 fatty acid-depleted rats. Biochimie, 2007, 89, 374-382.	1.3	4
22	Opposite effects of d-fructose on total versus cytosolic ATP/ADP ratio in pancreatic islet cells. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 773-780.	0.5	10
23	Fructokinase activity in rat liver, ileum, parotid gland, pancreas, pancreatic islet, B and non-B islet cell homogenates. International Journal of Molecular Medicine, 2006, 17, 517.	1.8	5
24	Adenine Nucleotide Pattern in Rat Pancreatic Islets Exposed to Nutrient Secretagogues. Endocrine, 2006, 29, 325-330.	2.2	3
25	Pancreatic Islet Function in ω3 Fatty Acid-Depleted Rats: Glucose Metabolism and Nutrient-Stimulated Insulin Release. Endocrine, 2006, 29, 457-466.	2.2	24
26	Impaired enzyme-to-enzyme channelling between hexokinase isoenzyme(s) and phosphoglucoisomerase in rat pancreatic islets incubated at a low concentration ofD-glucose. Cell Biochemistry and Function, 2005, 23, 15-21.	1.4	3
27	Gut Permeability and Intestinal Mucins, Invertase, and Peroxidase in Control and Diabetes-Prone BB Rats Fed Either a Protective or a Diabetogenic Diet. Digestive Diseases and Sciences, 2005, 50, 266-275.	1.1	13
28	Quantitative and qualitative alterations of intestinal mucins in BioBreeding rats. International Journal of Molecular Medicine, 2005, 15, 105.	1.8	2
29	Dissimilar effects of D-mannoheptulose on the phosphorylation of α- versus β-D-glucose by either hexokinase or glucokinase. International Journal of Molecular Medicine, 2004, 14, 107.	1.8	1
30	Bioactive GLP-1 in Gut, Receptor Expression in Pancreas, and Insulin Response to GLP-1 in Diabetes-Prone Rats. Endocrine, 2004, 23, 77-84.	2.2	5
31	Immediate and Delayed Effects of <csmall>d<csmall>-Fructose Upon Insulin, Somatostatin, and Glucagon Release by the Perfused Rat Pancreas. Endocrine, 2004, 24, 073-082.</csmall></csmall>	2.2	2
32	Effects of Thioacetamide on Pancreatic Islet B-Cell Function. Endocrine, 2004, 24, 083-092.	2.2	1
33	Enzyme-to-Enzyme Channeling in the Early Steps of Glycolysis in Rat Pancreatic Islets. Endocrine, 2004, 24, 105-110.	2.2	5
34	Peroxidase activity in the intestinal tract of Wistar–Furth, BBc and BBdp rats. Diabetes/Metabolism Research and Reviews, 2004, 20, 305-314.	1.7	7
35	Anomeric specificity of d-[U-14C]glucose incorporation into glycogen in rat hemidiaphragms. Biochimie, 2004, 86, 913-918.	1.3	5
36	Disaccharidase activity in the intestinal tract of Wistar–Furth, diabetes-resistant and diabetes-prone BioBreeding rats. British Journal of Nutrition, 2004, 91, 201-209.	1.2	16

#	Article	IF	CITATIONS
37	Anomeric Specificity of the Stimulatory Effect ofd-Glucose on d-Fructose Phosphorylation by Human Liver Glucokinase. Journal of Biological Chemistry, 2003, 278, 4531-4535.	1.6	4
38	Pharmacodynamics, insulinotropic action and hypoglycemic effect of nateglinide and glibenclamide in normal and diabetic rats. International Journal of Molecular Medicine, 2003, 11, 105.	1.8	0
39	Modulation by D-glucose anomers of the effect of D-fructose upon 45Ca efflux from prelabelled rat pancreatic islets. International Journal of Molecular Medicine, 2003, 12, 513-5.	1.8	1
40	Site-Directed Mutations in the FAD-Binding Domain of Glycerophosphate Dehydrogenase: Catalytic Defects with Preserved Mitochondrial Anchoring of the Enzyme in Transfected COS-7 Cells. Molecular Genetics and Metabolism, 2002, 75, 168-173.	0.5	3
41	Comparison between d-[3-3H]- and d-[5-3H]glucose and fructose utilization in pancreatic islets from control and hereditarily diabetic rats. Archives of Biochemistry and Biophysics, 2002, 408, 111-123.	1.4	6
42	The stimulus–secretion coupling of amino acid-induced insulin release. Insulinotropic action of ?-alanine. Biochimica Et Biophysica Acta - General Subjects, 2002, 1573, 100-104.	1.1	36
43	Invertase, Maltase, Lactase, and Peroxidase Activities in Duodenum of BB Rats. Endocrine, 2002, 19, 293-300.	2.2	7
44	Pancreatic Fate of 6-Deoxy-6-[¹²⁵ 1]lodo-D-Glucose. Endocrine, 2000, 13, 89-94.	2.2	4
45	Stimulus-Secretion Coupling of Arginine-Induced Insulin Release: Comparison Between the Cationic Amino Acid and its Methyl Ester. Endocrine, 2000, 13, 329-340.	2.2	61
46	Feeding a Protective Hydrolysed Casein Diet to Young Diabetes-prone BB Rats Affects Oxidation ofL[Uâ ^{^,} C14]glutamine in Islets and Peyer's Patches, Reduces Abnormally High Mitotic Activity in Mesenteric Lymph Nodes, Enhances Islet Insulin and Tends to Normalize NO Production. International Journal of Experimental Diabetes Research, 2000, 1, 121-130.	1.0	12
47	Anomeric Specificity of Human Liver and B-cell Glucokinase: Modulation by the Glucokinase Regulatory Protein. Archives of Biochemistry and Biophysics, 2000, 373, 126-134.	1.4	8
48	Dietary effects on insulin and nutrient metabolism in mesenteric lymph node cells, splenocytes, and pancreatic islets of BB rats. Metabolism: Clinical and Experimental, 2000, 49, 1111-1117.	1.5	10
49	Metabolic and Secretory Interactions betweend-Glucose andd-Fructose in Islets from GK Rats1. Endocrinology, 1999, 140, 5556-5565.	1.4	21
50	Double purification of radiolabelled d-fructose by high-performance liquid chromatography for tracing its metabolism. Journal of Chromatography A, 1999, 847, 53-57.	1.8	4
51	Effects of high extracellular K+ concentrations, diazoxide and/or Ca2+ deprivation upon d-glucose metabolism in pancreatic islets. Biochimica Et Biophysica Acta - Molecular Cell Research, 1999, 1451, 255-262.	1.9	5
52	Leukocyte glycolysis and lactate output in animal sepsis and ex vivo human blood. Metabolism: Clinical and Experimental, 1999, 48, 779-785.	1.5	108
53	Metabolic and Secretory Response to d-Fructose in Pancreatic Islets from Adult Rats Injected with Streptozotocin during the Neonatal Period. Molecular Genetics and Metabolism, 1999, 68, 86-90.	0.5	5
54	Effects of a Protective Hydrolyzed Casein Diet upon the Metabolic and Secretory Responses of Pancreatic Islets to IL-11 ² , Cytokine Production by Mesenteric Lymph Node Cells, Mitogenic and Biosynthetic Activities in Peyer's Patch Cells, and Mitogenic Activity in Pancreatic Lymph Node Cells from Control and Diabetes-Prone BB Rats. Molecular Genetics and Metabolism, 1999, 68, 379-390.	0.5	4

#	Article	IF	CITATIONS
55	Metabolic and Secretory Interactions between D-Glucose and D-Fructose in Islets from GK Rats. Endocrinology, 1999, 140, 5556-5565.	1.4	8
56	⁹⁹ mTc-sesta-(2-methoxy-isobutyl-isonitrile) Uptake by Pancreatic Islets, Parotid Cells, and Mammary Carcinoma Cells. Endocrine, 1998, 9, 113-118.	2.2	3
57	Esterification of Dâ€mannoheptulose confers to the heptose inhibitory action on Dâ€glucose metabolism in parotid cells. IUBMB Life, 1998, 44, 625-633.	1.5	7
58	Effect of 1,1-dimethyl-2-[2-morpholinophenyl]guanidine fumarate on pancreatic islet function. European Journal of Pharmacology, 1998, 352, 289-297.	1.7	3
59	Effect of N-[(trans-4-Isopropylcyclohexyl)- carbonyl]-d-phenylalanine on Nutrient Catabolism in Rat Pancreatic Islets. General Pharmacology, 1998, 31, 451-454.	0.7	7
60	Hydrolysis of hexose pentaacetate esters in rat pancreatic islets. Biochimica Et Biophysica Acta - Molecular Cell Research, 1998, 1405, 78-84.	1.9	4
61	Insulinotropic action of β-l-glucose pentaacetate. American Journal of Physiology - Endocrinology and Metabolism, 1998, 275, E993-E1006.	1.8	4
62	Glucose-induced positive cooperativity of fructose phosphorylation by human B-cell glucokinase. Molecular and Cellular Biochemistry, 1997, 175, 263-269.	1.4	20
63	Kinetics and specificity of human B-cell glucokinase: relevance to hexose-induced insulin release. Biochimica Et Biophysica Acta - Molecular Cell Research, 1996, 1312, 73-78.	1.9	16
64	FAD-glycerophosphate dehydrogenase activity in lymphocytes of type-2 diabetic patients and their relatives. Diabetes Research and Clinical Practice, 1996, 31, 17-25.	1.1	7
65	Relevance of Lactate Dehydrogenase Activity to the Control of Oxidative Glycolysis in Pancreatic Islet B-Cells. Archives of Biochemistry and Biophysics, 1996, 327, 260-264.	1.4	16
66	Anomeric Specificity of the Native and Mutant Forms of Human β-Cell Glucokinase. Archives of Biochemistry and Biophysics, 1996, 328, 26-34.	1.4	7
67	Insulinotropic Action of Methyl Pyruvate: Secretory, Cationic, and Biosynthetic Aspects. Archives of Biochemistry and Biophysics, 1996, 335, 229-244.	1.4	27
68	Insulinotropic Action of Methyl Pyruvate: Enzymatic and Metabolic Aspects. Archives of Biochemistry and Biophysics, 1996, 335, 245-257.	1.4	35
69	Do Leptin Receptors Play a Functional Role in the Endocrine Pancreas?. Biochemical and Biophysical Research Communications, 1996, 229, 794-798.	1.0	65
70	The coupling of metabolic to secretory events in pancreatic islets. Glucose-induced changes in mitochondrial redox state. Biochimica Et Biophysica Acta - Bioenergetics, 1996, 1273, 263-267.	0.5	15
71	Hexose Metabolism in Pancreatic Islets: Apparent Dissociation between the Secretory and Metabolic Effects ofD-Fructose. Biochemical and Molecular Medicine, 1996, 59, 182-186.	1.5	15
72	Effects of chronically elevated glucose levels on the functional properties of rat pancreatic beta-cells. Diabetes, 1996, 45, 1774-1782.	0.3	32

#	Article	IF	CITATIONS
73	Hexose metabolism in pancreatic islets: Effect of D-glucose on the mitochondrial redox state. Molecular and Cellular Biochemistry, 1995, 142, 43-48.	1.4	5
74	Dual effect of formycin a upon the hydrolysis of phosphoinositides in perifused pancreatic islets. Cellular Signalling, 1995, 7, 821-826.	1.7	3
75	Enzymatic, metabolic and secretory patterns in human islets of Type 2 (non-insulin-dependent) diabetic patients. Diabetologia, 1994, 37, 177-181.	2.9	99
76	Enzymatic, metabolic and secretory perturbations in pancreatic islets of thyroidectomized rats. Cell Biochemistry and Function, 1993, 11, 145-151.	1.4	1
77	Preferential alteration of oxidative relative to total glycolysis in pancreatic islets of two rat models of inherited or acquired Type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia, 1993, 36, 305-309.	2.9	38
78	Deficient activity of FAD-linked glycerophosphate dehydrogenase in islets of GK rats. Diabetologia, 1993, 36, 722-726.	2.9	107
79	Metabolic, Ionic, and Secretory Response to D-Clucose in Islets from Rats with Acquired or Inherited Non-Insulin-Dependent Diabetes. Biochemical Medicine and Metabolic Biology, 1993, 50, 301-321.	0.7	28
80	FAD-linked glycerophosphate dehydrogenase deficiency in pancreatic islets of mice with hereditary diabetes. FEBS Letters, 1993, 316, 224-227.	1.3	29
81	Modulation of the insulinotropic action of glibenclamide and glimepiride by nutrient secretagogues in pancreatic islets from normoglycemic and hyperglycemic rats. Biochemical Pharmacology, 1993, 45, 1845-1849.	2.0	19
82	Hexose metabolism in pancreatic islets: Time-course of the oxidative response to d-Glucose. Biochimica Et Biophysica Acta - Molecular Cell Research, 1993, 1177, 54-60.	1.9	8
83	Interference of glycogenolysis with glycolysis in pancreatic islets from glucose-infused rats Journal of Clinical Investigation, 1993, 91, 432-436.	3.9	85
84	Possible role of glycogen accumulation in B-cell glucotoxicity. Metabolism: Clinical and Experimental, 1992, 41, 814-819.	1.5	41
85	Hexose metabolism in pancreatic islets: Unequal oxidation of the two carbons of glucose-derived acetyl residues. Archives of Biochemistry and Biophysics, 1992, 292, 244-249.	1.4	13
86	Interconversion of d-fructose 1,6-bisphosphate and triose phosphates in human erythrocytes. BBA - Proteins and Proteomics, 1992, 1121, 31-40.	2.1	9
87	Occurrence of the purine nucleotide cycle in rat pancreatic islets. Biochemical Medicine and Metabolic Biology, 1992, 48, 127-136.	0.7	4
88	Hexose metabolism in pancreatic islets. Regulation of D-[6-14C]glucose oxidation by non-nutrient secretagogues. Molecular and Cellular Endocrinology, 1991, 76, 1-6.	1.6	12
89	Neonatal streptozotocin injection: A model of glucotoxicity?. Metabolism: Clinical and Experimental, 1991, 40, 1101-1105.	1.5	11
90	Metabolic and secretory response of parotid cells to cationic amino acids. Uptake and catabolism of L-arginine and L-ornithine. Biochimica Et Biophysica Acta - Molecular Cell Research, 1991, 1091, 151-157.	1.9	6

#	Article	IF	CITATIONS
91	Arginine metabolism in rat enterocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 1991, 1092, 304-310.	1.9	70
92	Hexose metabolism in pancreatic islets. Regulation of aerobic glycolysis and pyruvate decarboxylation. International Journal of Biochemistry & Cell Biology, 1991, 23, 955-959.	0.8	17
93	Stimulus-secretion coupling of arginine-induced insulin release: Significance of changes in extracellular and intracellular pH. Cell Biochemistry and Function, 1991, 9, 1-7.	1.4	14
94	Hexose metabolism in pancreatic islets. Molecular and Cellular Biochemistry, 1991, 107, 95-102.	1.4	11
95	Hexose metabolism in pancreatic islets: The glucose-6-phosphatase riddle. Molecular and Cellular Biochemistry, 1991, 101, 67-71.	1.4	15
96	Impairment of glycerol phosphate shuttle in islets from rats with diabetes induced by neonatal streptozocin. Diabetes, 1991, 40, 227-232.	0.3	26
97	The fuel concept for insulin release: regulation of glucose phosphorylation in pancreatic islets. Biochemical Society Transactions, 1990, 18, 107-108.	1.6	14
98	Impairment of the mitochondrial oxidative response to D-glucose in pancreatic islets from adult rats injected with streptozotocin during the neonatal period. Diabetologia, 1990, 33, 654-660.	2.9	45
99	A sensitive radioisotopic method for the measurement of NAD(P)H: Its application to the assay of metabolites and enzymatic activities. Analytical Biochemistry, 1990, 186, 236-242.	1.1	54
100	Radioisotopic measurement of femtomolar amounts of NAD(P)H in the assay of enzymatic activity at a single cell level. Biochimica Et Biophysica Acta - Molecular Cell Research, 1990, 1053, 125-129.	1.9	4
101	Perturbation of pancreatic islet function in glucose-infused rats. Metabolism: Clinical and Experimental, 1990, 39, 87-95.	1.5	67
102	Hexose metabolism in pancreatic islets. Biochimica Et Biophysica Acta - Bioenergetics, 1990, 1019, 42-50.	0.5	57
103	Differential Sensitivity to β-Cell Secretagogues in Cultured Rat Pancreatic Islets Exposed to Human Interleukin-1β*. Endocrinology, 1989, 125, 752-759.	1.4	53
104	Phosphoglucoisomerase-catalyzed interconversion of hexose phosphates; comparison with phosphomannoisomerase. BBA - Proteins and Proteomics, 1989, 998, 118-125.	2.1	27
105	Stimulus-secretion coupling of arginine-induced insulin release. Biochemical Pharmacology, 1989, 38, 327-330.	2.0	76
106	Stimulus-secretion coupling of arginine-induced insulin release. Metabolism of l-arginine and l-ornithine in pancreatic islets. Biochimica Et Biophysica Acta - Molecular Cell Research, 1989, 1013, 133-143.	1.9	45
107	Stimulus-secretion coupling of arginine-induced insulin release. Functional response of islets to l-arginine and l-ornithine. Biochimica Et Biophysica Acta - Molecular Cell Research, 1989, 1013, 144-151.	1.9	62
108	Hexose metabolism in pancreatic islets stimulation by d-glucose of [2-3H]glycerol detritiation. International Journal of Biochemistry & Cell Biology, 1988, 20, 595-598.	0.8	20

#	Article	IF	CITATIONS
109	Hexose metabolism in pancreatic islets. Archives of Biochemistry and Biophysics, 1988, 261, 16-26.	1.4	22
110	Hexose metabolism in pancreatic islets. Feedback control of d-glucose oxidation by functional events. Biochimica Et Biophysica Acta - Molecular Cell Research, 1988, 971, 246-254.	1.9	81
111	Hexose metabolism in pancreatic islets. Feedback control of d-glucose oxidation by functional events. Biochimica Et Biophysica Acta - Bioenergetics, 1988, 971, 246-254.	0.5	13
112	Defective Catabolism of D-Glucose and L-Glutamine in Mouse Pancreatic Islets Maintained in Culture after Streptozotocin Exposure*. Endocrinology, 1988, 123, 1001-1007.	1.4	43
113	Insulin production and glucose metabolism in isolated pancreatic islets of rats with NIDDM. Diabetes, 1988, 37, 1226-1233.	0.3	20
114	Glucose-induced changes in cytosolic ATP content in pancreatic islets. Biochimica Et Biophysica Acta - Molecular Cell Research, 1987, 927, 190-195.	1.9	110
115	Hexose metabolism in pancreatic islets. Molecular and Cellular Endocrinology, 1987, 49, 219-225.	1.6	30
116	Glycerol phosphorylation and oxidation in pancreatic islets. Molecular and Cellular Endocrinology, 1987, 52, 251-256.	1.6	11
117	Can desensitization of the B-cell to D-glucose be simulated in cultured pancreatic islets?. Acta Diabetologica Latina, 1987, 24, 17-25.	0.2	18
118	Metabolic and secretory response of tumoral-insulin producing cells to D-fructose and D-galactose. Molecular and Cellular Biochemistry, 1987, 74, 163-71.	1.4	7
119	Fructose metabolism via the pentose cycle in tumoral islet cells. FEBS Journal, 1987, 170, 447-452.	0.2	19
120	Hexose metabolism in pancreatic islets: Compartmentation of hexokinase in islet cells. Archives of Biochemistry and Biophysics, 1986, 251, 61-67.	1.4	27
121	Phosphorylation of 3-O-methyl-D-glucose by yeast and beef hexokinase. FEBS Letters, 1986, 198, 292-294.	1.3	20
122	Influence of Lactation upon Pancreatic Islet Function*. Endocrinology, 1986, 118, 687-694.	1.4	17
123	Hexose metabolism in pancreatic islets. ? Galactose transport, phosphorylation and oxidation. Molecular and Cellular Biochemistry, 1985, 66, 61-4.	1.4	40
124	Stimulation of protein kinase C and insulin release by 1-oleoyl-2-acetyl-glycerol. FEBS Journal, 1985, 149, 23-27.	0.2	51
125	Clucose metabolism in insulin-producing tumoral cells. Archives of Biochemistry and Biophysics, 1985, 241, 561-570.	1.4	48
126	Pentose cycle pathway in normal and tumoral islet cells. FEBS Letters, 1985, 185, 1-3.	1.3	30

#	Article	IF	CITATIONS
127	Hexose metabolism in pancreatic islets. The phosphorylation of fructose. FEBS Journal, 1984, 144, 223-226.	0.2	17
128	The stimulus-secretion coupling of amino acid-induced insulin release: Metabolism of l-asparagine in pancreatic islets. Archives of Biochemistry and Biophysics, 1984, 229, 155-169.	1.4	12
129	The stimulus-secretion coupling of glucose-induced insulin release: Fuel metabolism in islets deprived of exogenous nutrient. Archives of Biochemistry and Biophysics, 1983, 224, 102-110.	1.4	92
130	Calcium-antagonists and islet function—II. Comparison between nifedipine and chemically related drugs. Biochemical Pharmacology, 1981, 30, 1039-1041.	2.0	53
131	The stimulus-secretion coupling of glucose-induced insulin release: Enzymes of mannose metabolism in pancreatic islets. Archives of Biochemistry and Biophysics, 1981, 212, 54-62.	1.4	17
132	The stimulusâ€secretion coupling of amino acidâ€induced insulin release: insulinotropic action of branchedâ€chain amino acids at physiological concentrations of glucose and glutamine. European Journal of Clinical Investigation, 1981, 11, 455-460.	1.7	47
133	The stimulus–secretion coupling of glucose-induced insulin release. Metabolism of glucose in K+-deprived islets. Biochemical Journal, 1980, 186, 183-190.	1.7	30
134	L-leucine and a nonmetabolized analogue activate pancreatic islet glutamate dehydrogenase. Nature, 1980, 288, 187-189.	13.7	327
135	Similarities in the Stimulus-Secretion Coupling Mechanisms of Glucose- and 2-Keto Acid-Induced Insulin Release*. Endocrinology, 1980, 106, 203-219.	1.4	110
136	The possible significance of intracellular pH in insulin release. Life Sciences, 1980, 26, 1367-1371.	2.0	31
137	The stimulus-secretion coupling of glucose-induced insulin release XLVI. Physiological role of I-glutamine as a fuel for pancreatic islets. Molecular and Cellular Endocrinology, 1980, 20, 171-189.	1.6	119
138	The stimulus secretion coupling of glucose-induced insulin release. Archives of Biochemistry and Biophysics, 1979, 194, 49-62.	1.4	66
139	The Stimulus-Secretion Coupling of Glucose-Induced Insulin Release. Metoabolic Effects of Menadione in Isolated Islets. FEBS Journal, 1978, 87, 121-130.	0.2	120
140	REGULATION OF CALCIUM FLUXES AND THEIR REGULATORY ROLES IN PANCREATIC ISLETS. Annals of the New York Academy of Sciences, 1978, 307, 562-582.	1.8	132
141	Calcium antagonists and islet function—III. Biochemical Pharmacology, 1977, 26, 735-740.	2.0	71
142	Measurement of lactic acid in nanomolar amounts reliability of such a method as an index of glycolysis in pancreatic islets. Biochemical Medicine, 1976, 15, 34-41.	0.5	42
143	Identification of the α-stereospecific glucosensor in the pancreatic B-cell. FEBS Letters, 1976, 65, 131-134.	1.3	14
144	The stimulus-secretion coupling of glucose-induced insulin release. Acta Diabetologica Latina, 1976, 13, 202-215.	0.2	66

#	Article	IF	CITATIONS
145	The Stimulus-Secretion Coupling of Glucose-Induced Insulin Release. Sorbitol Metabolism in Isolated Islets. FEBS Journal, 1974, 47, 365-370.	0.2	68