Guanghui Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8482325/publications.pdf

Version: 2024-02-01

516710 501196 2,608 28 16 28 citations g-index h-index papers 30 30 30 2127 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Origin, evolution, and molecular function of DELLA proteins in plants. Crop Journal, 2022, 10, 287-299.	5.2	12
2	Auxin promotes fiber elongation by enhancing gibberellic acid biosynthesis in cotton. Plant Biotechnology Journal, 2022, 20, 423-425.	8.3	19
3	Three root hair defective genes, GhRHD3-1, GhRHD4-1, and GhRSL4-1, regulate fiber cell elongation in cotton. Industrial Crops and Products, 2022, 180, 114751.	5.2	1
4	The hexokinase Gene Family in Cotton: Genome-Wide Characterization and Bioinformatics Analysis. Frontiers in Plant Science, 2022, 13, .	3.6	5
5	<scp><i>GhBZR3</i></scp> suppresses cotton fiber elongation by inhibiting veryâ€longâ€chain fatty acid biosynthesis. Plant Journal, 2022, 111, 785-799.	5.7	11
6	GhARF16â€1 modulates leaf development by transcriptionally regulating the <i>GhKNOX2â€1</i> gene in cotton. Plant Biotechnology Journal, 2021, 19, 548-562.	8.3	15
7	Genome-wide characterization of the WAK gene family and expression analysis under plant hormone treatment in cotton. BMC Genomics, 2021, 22, 85.	2.8	23
8	Transcriptomic analyses show that 24-epibrassinolide (EBR) promotes cold tolerance in cotton seedlings. PLoS ONE, 2021, 16, e0245070.	2.5	13
9	GhPIPLC2D promotes cotton fiber elongation by enhancing ethylene biosynthesis. IScience, 2021, 24, 102199.	4.1	5
10	Adaptive Growth: Shaping Auxin-Mediated Root System Architecture. Trends in Plant Science, 2020, 25, 121-123.	8.8	22
11	Origin of a Subgenome and Genome Evolution ofÂAllotetraploid Cotton Species. Molecular Plant, 2020, 13, 1238-1240.	8.3	11
12	Patterns of presence-absence variants in Upland cotton. Science China Life Sciences, 2020, 63, 1600-1603.	4.9	1
13	Neo-gibberellin Signaling: Guiding the Next Generation of the Green Revolution. Trends in Plant Science, 2020, 25, 520-522.	8.8	6
14	GhYGL1d, a pentatricopeptide repeat protein, is required for chloroplast development in cotton. BMC Plant Biology, 2019, 19, 350.	3.6	10
15	Evolution of fast root gravitropism in seed plants. Nature Communications, 2019, 10, 3480.	12.8	68
16	Comprehensive analysis of WOX genes uncovers that WOX13 is involved in phytohormone-mediated fiber development in cotton. BMC Plant Biology, 2019, 19, 312.	3.6	28
17	Comprehensive analyses of ZFP gene family and characterization of expression profiles during plant hormone response in cotton. BMC Plant Biology, 2019, 19, 329.	3.6	12
18	A Pivotal Role of Hormones in Regulating Cotton Fiber Development. Frontiers in Plant Science, 2019, 10, 87.	3.6	69

#	Article	IF	CITATIONS
19	Auxinâ€mediated statolith production for root gravitropism. New Phytologist, 2019, 224, 761-774.	7.3	55
20	Resequencing core accessions of a pedigree identifies derivation of genomic segments and key agronomic trait loci during cotton improvement. Plant Biotechnology Journal, 2019, 17, 762-775.	8.3	40
21	Two pivotal <scp>RNA</scp> editing sites in the mitochondrial <i>atp1</i> <scp>mRNA</scp> are required for <scp>ATP</scp> synthase to produce sufficient <scp>ATP</scp> for cotton fiber cell elongation. New Phytologist, 2018, 218, 167-182.	7.3	36
22	Genome-wide identification of the GhARF gene family reveals that GhARF2 and GhARF18 are involved in cotton fibre cell initiation. Journal of Experimental Botany, 2018, 69, 4323-4337.	4.8	43
23	The PIN gene family in cotton (Gossypium hirsutum): genome-wide identification and gene expression analyses during root development and abiotic stress responses. BMC Genomics, 2017, 18, 507.	2.8	46
24	A Genome-Scale Analysis of the PIN Gene Family Reveals Its Functions in Cotton Fiber Development. Frontiers in Plant Science, 2017, 8, 461.	3.6	44
25	Abundant RNA editing sites of chloroplast protein-coding genes in Ginkgo biloba and an evolutionary pattern analysis. BMC Plant Biology, 2016, 16, 257.	3.6	49
26	Genome sequence of cultivated Upland cotton (GossypiumÂhirsutum TM-1) provides insights into genome evolution. Nature Biotechnology, 2015, 33, 524-530.	17.5	1,064
27	Genome sequence of the cultivated cotton Gossypium arboreum. Nature Genetics, 2014, 46, 567-572.	21.4	883
28	Using Genomeâ€≺scp>Referenced Expressed Sequence Tag Assembly to Analyze the Origin and Expression Patterns of <i>Gossypium hirsutum</i> Transcripts. Journal of Integrative Plant Biology, 2013, 55, 576-585.	8.5	17