List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8482173/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Effect of Singers' Masks on the Impulse Dispersion of Aerosols During Singing. Journal of Voice, 2024, 38, 247.e1-247.e10.	1.5	7
2	Sources of Aerosol Dispersion During Singing and Potential Safety Procedures for Singers. Journal of Voice, 2023, 37, 504-514.	1.5	9
3	Effects of surgical masks on aerosol dispersion in professional singing. Journal of Exposure Science and Environmental Epidemiology, 2022, 32, 727-734.	3.9	15
4	Impulse dispersion of aerosols during playing wind instruments. PLoS ONE, 2022, 17, e0262994.	2.5	7
5	Simulation of Aerosol Dispersion During Medical Examinations. Journal of Engineering and Science in Medical Diagnostics and Therapy, 2022, 5, .	0.5	1
6	Evaluation of Respiratory Particle Emission during Otorhinolaryngological Procedures in the Context of the SARS-CoV-2 Pandemic. Diagnostics, 2022, 12, 1603.	2.6	1
7	The Effect of Water Resistance Therapy on the Impulse Dispersion of Aerosols During Sustained Phonation. Journal of Voice, 2022, , .	1.5	Ο
8	Duration of biodynamic changes associated with water resistance therapy. Logopedics Phoniatrics Vocology, 2021, 46, 126-133.	1.0	10
9	The Effect of Nasalance on Vocal Fold Oscillation Patterns During the Male Passaggio. Journal of Voice, 2021, 35, 500.e9-500.e16.	1.5	14
10	Influence of Loudness on Vocal Stability in the Male Passaggio. Journal of Voice, 2021, , .	1.5	0
11	Interdependencies between acoustic and high-speed videoendoscopy parameters. PLoS ONE, 2021, 16, e0246136.	2.5	4
12	Aeroacoustic Sound Source Characterization of the Human Voice Production-Perturbed Convective Wave Equation. Applied Sciences (Switzerland), 2021, 11, 2614.	2.5	20
13	3D-FV-FE Aeroacoustic Larynx Model for Investigation of Functional Based Voice Disorders. Frontiers in Physiology, 2021, 12, 616985.	2.8	24
14	Fluid-structure-acoustic interactions in an <i>ex vivo</i> porcine phonation model. Journal of the Acoustical Society of America, 2021, 149, 1657-1673.	1.1	11
15	Human Laryngeal Mucus from the Vocal Folds: Rheological Characterization by Particle Tracking Microrheology and Oscillatory Shear Rheology. Applied Sciences (Switzerland), 2021, 11, 3011.	2.5	11
16	Reply to Philip <i>et al.</i> : Aerosol Transmission of SARS-CoV-2: Inhalation as well as Exhalation Matters for COVID-19. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 1042-1043.	5.6	5
17	Efficient numerical simulation of the human voice. Elektrotechnik Und Informationstechnik, 2021, 138, 219-228.	1.1	7
18	Clinical characterization of respiratory large droplet production during common airway procedures using high-speed imaging. Scientific Reports, 2021, 11, 10627.	3.3	8

#	Article	IF	CITATIONS
19	A Deep Learning Enhanced Novel Software Tool for Laryngeal Dynamics Analysis. Journal of Speech, Language, and Hearing Research, 2021, 64, 1889-1903.	1.6	50
20	Are source-filter interactions detectable in classical singing during vowel glides?. Journal of the Acoustical Society of America, 2021, 149, 4565-4578.	1.1	10
21	OpenHSV: an open platform for laryngeal high-speed videoendoscopy. Scientific Reports, 2021, 11, 13760.	3.3	25
22	Special Issue on Computational Methods and Engineering Solutions to Voice II. Applied Sciences (Switzerland), 2021, 11, 9459.	2.5	0
23	The mechanisms of harmonic sound generation during phonation: A multi-modal measurement-based approach. Journal of the Acoustical Society of America, 2021, 150, 3485-3499.	1.1	8
24	Aerosol Dispersion During Different Phonatory Tasks in Amateur Singers. Journal of Voice, 2021, , .	1.5	4
25	Intersegmenter Variability in High‧peed Laryngoscopyâ€Based Glottal Area Waveform Measures. Laryngoscope, 2020, 130, E654-E661.	2.0	19
26	Impulse Dispersion of Aerosols during Singing and Speaking: A Potential COVID-19 Transmission Pathway. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1584-1587.	5.6	42
27	BAGLS, a multihospital Benchmark for Automatic Glottis Segmentation. Scientific Data, 2020, 7, 186.	5.3	44
28	Vocal fold oscillation pattern changes related to loudness in patients with vocal fold mass lesions. Journal of Otolaryngology - Head and Neck Surgery, 2020, 49, 80.	1.9	2
29	Efficient Biomedical Image Segmentation on EdgeTPUs at Point of Care. IEEE Access, 2020, 8, 139356-139366.	4.2	29
30	Rethinking glottal midline detection. Scientific Reports, 2020, 10, 20723.	3.3	16
31	Determination of Clinical Parameters Sensitive to Functional Voice Disorders Applying Boosted Decision Stumps. IEEE Journal of Translational Engineering in Health and Medicine, 2020, 8, 1-11.	3.7	5
32	Immediate effects of water resistance therapy on patients with vocal fold mass lesions. European Archives of Oto-Rhino-Laryngology, 2020, 277, 1995-2003.	1.6	16
33	The impact of a standardized vocal loading test on vocal fold oscillations. European Archives of Oto-Rhino-Laryngology, 2020, 277, 1699-1705.	1.6	8
34	Numerical Investigation of the Hydrodynamics of Changing Fin Positions within a 4-Fin Surfboard Configuration. Applied Sciences (Switzerland), 2020, 10, 816.	2.5	5
35	Machine learning based identification of relevant parameters for functional voice disorders derived from endoscopic high-speed recordings. Scientific Reports, 2020, 10, 10517.	3.3	27
36	Secondary Tracheoesophageal Puncture After Laryngectomy Increases Complications With Shunt and Voice Prosthesis. Laryngoscope, 2020, 130, E865-E873.	2.0	15

#	Article	IF	CITATIONS
37	Hybrid aeroacoustic approach for the efficient numerical simulation of human phonation. Journal of the Acoustical Society of America, 2020, 147, 1179-1194.	1.1	19
38	Haptic Rendering of Soft-Tissue for Training Surgical Procedures at the Larynx. Informatik Aktuell, 2020, , 342-347.	0.6	0
39	Dependencies and Ill-designed Parameters Within High-speed Videoendoscopy and Acoustic Signal Analysis. Journal of Voice, 2019, 33, 811.e1-811.e12.	1.5	25
40	Control of Fundamental Frequency in Dysphonic Patients During Phonation and Speech. Journal of Voice, 2019, 33, 851-859.	1.5	18
41	Computational hydrodynamics of a typical 3-fin surfboard setup. Journal of Fluids and Structures, 2019, 90, 297-314.	3.4	15
42	Acoustic and Aerodynamic Coupling during Phonation in MRI-Based Vocal Tract Replicas. Applied Sciences (Switzerland), 2019, 9, 3562.	2.5	5
43	Towards a Clinically Applicable Computational Larynx Model. Applied Sciences (Switzerland), 2019, 9, 2288.	2.5	14
44	Influence of spatial camera resolution in high-speed videoendoscopy on laryngeal parameters. PLoS ONE, 2019, 14, e0215168.	2.5	26
45	Impact of Subharmonic and Aperiodic Laryngeal Dynamics on the Phonatory Process Analyzed in Ex Vivo Rabbit Models. Applied Sciences (Switzerland), 2019, 9, 1963.	2.5	7
46	Aerodynamic impact of the ventricular folds in computational larynx models. Journal of the Acoustical Society of America, 2019, 145, 2376-2387.	1.1	14
47	Low-light image enhancement of high-speed endoscopic videos using a convolutional neural network. Medical and Biological Engineering and Computing, 2019, 57, 1451-1463.	2.8	44
48	Juvenile Ovine Ex Vivo Larynges: Phonatory, Histologic, and Micro CT Based Anatomic Analyses. BioMed Research International, 2019, 2019, 1-11.	1.9	4
49	Elastography of vocal folds. Journal of Physics: Conference Series, 2019, 1379, 012016.	0.4	1
50	An acoustic pressure pipette aspiration method for isotropic materials. Journal of Physics: Conference Series, 2019, 1379, 012017.	0.4	0
51	Laryngeal Pressure Estimation With a Recurrent Neural Network. IEEE Journal of Translational Engineering in Health and Medicine, 2019, 7, 1-11.	3.7	20
52	Computational Models of Laryngeal Aerodynamics: Potentials and Numerical Costs. Journal of Voice, 2019, 33, 385-400.	1.5	20
53	Voice quality after thyroplasty type lÂusing a silicone block. Bratislava Medical Journal, 2019, 120, 864-866.	0.8	2
54	Physical parameter estimation from porcine ex vivo vocal fold dynamics in an inverse problem framework. Biomechanics and Modeling in Mechanobiology, 2018, 17, 777-792.	2.8	12

#	Article	IF	CITATIONS
55	Clinical relevance of endoscopic threeâ€dimensional imaging for quantitative assessment of phonation. Laryngoscope, 2018, 128, 2367-2374.	2.0	16
56	Phonation Analysis Combined with 3D Reconstruction of the Thyroarytenoid Muscle in Aged Ovine Ex Vivo Larynx Models. Journal of Voice, 2018, 32, 517-524.	1.5	9
57	Analysis of the Auditory Feedback and Phonation in Normal Voices. Annals of Otology, Rhinology and Laryngology, 2018, 127, 89-98.	1.1	10
58	Aeroacoustic analysis of the human phonation process based on a hybrid acoustic PIV approach. Experiments in Fluids, 2018, 59, 1.	2.4	28
59	Influence of Analyzed Sequence Length on Parameters in Laryngeal High-Speed Videoendoscopy. Applied Sciences (Switzerland), 2018, 8, 2666.	2.5	23
60	Investigation of phonatory characteristics using <i>ex vivo</i> rabbit larynges. Journal of the Acoustical Society of America, 2018, 144, 142-152.	1.1	17
61	Subtext Word Accuracy and Prosodic Features forÂAutomatic Intelligibility Assessment. Lecture Notes in Computer Science, 2018, , 473-481.	1.3	0
62	The influence of vocal fold mass lesions on the passaggio region of professional singers. Laryngoscope, 2017, 127, 1392-1401.	2.0	14
63	Oscillatory Onset and Offset in Young Vocally Healthy Adults Across Various Measurement Methods. Journal of Voice, 2017, 31, 512.e17-512.e24.	1.5	7
64	Automated setup for <i>ex vivo</i> larynx experiments. Journal of the Acoustical Society of America, 2017, 141, 1349-1359.	1.1	23
65	Impact of Superparamagnetic Iron Oxide Nanoparticles on Vocal Fold Fibroblasts: Cell Behavior and Cellular Iron Kinetics. Nanoscale Research Letters, 2017, 12, 284.	5.7	10
66	The Influence of Vowels on Vocal Fold Dynamics in the Tenor's Passaggio. Journal of Voice, 2017, 31, 424-429.	1.5	13
67	Influence of glottal closure on the phonatory process in <i>ex vivo</i> porcine larynges. Journal of the Acoustical Society of America, 2017, 142, 2197-2207.	1.1	21
68	Oscillatory Characteristics of the Vocal Folds Across the Tenor Passaggio. Journal of Voice, 2017, 31, 381.e5-381.e14.	1.5	19
69	Biomechanical simulation of vocal fold dynamics in adults based on laryngeal high-speed videoendoscopy. PLoS ONE, 2017, 12, e0187486.	2.5	23
70	Endoscopic Laser-Based 3D Imaging for Functional Voice Diagnostics. Applied Sciences (Switzerland), 2017, 7, 600.	2.5	16
71	Degrees of Freedom in a Vocal Fold Inverse Problem. Lecture Notes in Computer Science, 2017, , 475-484.	1.3	2
72	Laryngeal evidence for the first and second passaggio in professionally trained sopranos. PLoS ONE, 2017, 12, e0175865.	2.5	18

#	Article	IF	CITATIONS
73	Robust Automatic Evaluation of Intelligibility in Voice Rehabilitation Using Prosodic Analysis. Lecture Notes in Computer Science, 2017, , 11-19.	1.3	4
74	Laryngeal High-Speed Videoendoscopy: Sensitivity of Objective Parameters towards Recording Frame Rate. BioMed Research International, 2016, 2016, 1-19.	1.9	23
75	Evaluation of Analytical Modeling Functions for the Phonation Onset Process. Computational and Mathematical Methods in Medicine, 2016, 2016, 1-10.	1.3	9
76	The mechanisms of subharmonic tone generation in a synthetic larynx model. Journal of the Acoustical Society of America, 2016, 139, 3182-3192.	1.1	15
77	Dynamic vocal fold parameters with changing adduction in <i>ex-vivo</i> hemilarynx experiments. Journal of the Acoustical Society of America, 2016, 139, 2372-2385.	1.1	29
78	Three-dimensional computation of flow and sound for human hemilarynx. Computers and Fluids, 2016, 134-135, 41-50.	2.5	7
79	Analysis Method for the Neurological and Physiological Processes Underlying the Pitch-Shift Reflex. Acta Acustica United With Acustica, 2016, 102, 284-297.	0.8	11
80	3D Reconstruction of Human Laryngeal Dynamics Based on Endoscopic High-Speed Recordings. IEEE Transactions on Medical Imaging, 2016, 35, 1615-1624.	8.9	39
81	Preface: Recent Advances in Understanding the Human Phonatory Process. Acta Acustica United With Acustica, 2016, 102, 195-208.	0.8	8
82	Acoustic Impact of Ventricular Folds on Phonation Studied in Ex Vivo Human Larynx Models. Acta Acustica United With Acustica, 2016, 102, 244-256.	0.8	14
83	Objective voice and speech analysis of persons with chronic hoarseness by prosodic analysis of speech samples. Logopedics Phoniatrics Vocology, 2016, 41, 106-116.	1.0	35
84	Magnetic Tissue Engineering for Voice Rehabilitation - First Steps in a Promising Field. Anticancer Research, 2016, 36, 3085-91.	1.1	3
85	Automatic Evaluation of Voice Quality Using Text-Based Laryngograph Measurements and Prosodic Analysis. Computational and Mathematical Methods in Medicine, 2015, 2015, 1-11.	1.3	5
86	Influence of FO and Sequence Length of Audio and Electroglottographic Signals on Perturbation Measures for Voice Assessment. Journal of Voice, 2015, 29, 517.e11-517.e21.	1.5	7
87	Phase-locked flow field analysis in a synthetic human larynx model. Experiments in Fluids, 2015, 56, 1.	2.4	25
88	Three-Dimensional Optical Reconstruction of Vocal Fold Kinematics Using High-Speed Video With a Laser Projection System. IEEE Transactions on Medical Imaging, 2015, 34, 2572-2582.	8.9	32
89	Automatic modelâ€based semantic registration of multimodal MRI knee data. Journal of Magnetic Resonance Imaging, 2015, 41, 633-644	3.4	7
90	Automatic detection of anatomical landmarks on the knee joint using MRI data. Journal of Magnetic Resonance Imaging, 2015, 41, 183-192.	3.4	6

#	Article	IF	CITATIONS
91	Development of a time-dependent numerical model for the assessment of non-stationary pharyngoesophageal tissue vibrations after total laryngectomy. Biomechanics and Modeling in Mechanobiology, 2015, 14, 169-184.	2.8	7
92	Language-Independent Age Estimation from Speech Using Phonological and Phonemic Features. Lecture Notes in Computer Science, 2015, , 165-173.	1.3	0
93	Spatiotemporal Analysis of High-Speed Videolaryngoscopic Imaging of Organic Pathologies in Males. Journal of Speech, Language, and Hearing Research, 2014, 57, 1148-1161.	1.6	29
94	Preliminary Results on the Influence of Engineered Artificial Mucus Layer on Phonation. Journal of Speech, Language, and Hearing Research, 2014, 57, S637-47.	1.6	16
95	Characterizing Vibratory Kinematics in Children and Adults With High-Speed Digital Imaging. Journal of Speech, Language, and Hearing Research, 2014, 57, S674-86.	1.6	45
96	Language-Independent Automatic Evaluation of Intelligibility of Chronically Hoarse Persons. Folia Phoniatrica Et Logopaedica, 2014, 66, 219-226.	1.1	0
97	Measurement of Glottal Cycle Characteristics Between Children and Adults: Physiological Variations. Journal of Voice, 2014, 28, 476-486.	1.5	47
98	Investigation of prescribed movement in fluid–structure interaction simulation for the human phonation process. Computers and Fluids, 2013, 86, 133-140.	2.5	31
99	Sentence repetition and digit span: Potential markers of bilingual children with suspected SLI?. Logopedics Phoniatrics Vocology, 2013, 38, 1-10.	1.0	21
100	Influence of Vortical Flow Structures on the Glottal Jet Location in the Supraglottal Region. Journal of Voice, 2013, 27, 531-544.	1.5	22
101	Pipette aspiration applied to the characterization of nonhomogeneous, transversely isotropic materials used for vocal fold modeling. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 17, 137-151.	3.1	13
102	Vocal fold vibrations at high soprano fundamental frequencies. Journal of the Acoustical Society of America, 2013, 133, EL82-EL87.	1.1	45
103	Phonovibrographic wavegrams: Visualizing vocal fold kinematics. Journal of the Acoustical Society of America, 2013, 133, 1055-1064.	1.1	7
104	Material and shape optimization for multi-layered vocal fold models using transient loadings. Journal of the Acoustical Society of America, 2013, 134, 1261-1270.	1.1	2
105	Quantitative analysis of organic vocal fold pathologies in females by highâ€speed endoscopy. Laryngoscope, 2013, 123, 1686-1693.	2.0	31
106	Vocal fold vibration amplitude, open quotient, speed quotient and their variability along glottal length: Kymographic data from normal subjects. Logopedics Phoniatrics Vocology, 2013, 38, 182-192.	1.0	73
107	Development of a small film sensor for the estimation of the contact pressure of artificial vocal folds. Proceedings of Meetings on Acoustics, 2013, , .	0.3	3
108	Simultaneous Tracking of Vocal Fold Superior Surface Motion and Glottal Jet Dynamics. , 2013, , .		2

#	Article	IF	CITATIONS
109	Three-dimensional biomechanical properties of human vocal folds: Parameter optimization of a numerical model to matchin vitrodynamics. Journal of the Acoustical Society of America, 2012, 131, 1378-1390.	1.1	17
110	Vocal Fold Vibratory Behavior Changes following Surgical Treatment of Polyps Investigated with High-Speed Videoendoscopy and Phonovibrography. Annals of Otology, Rhinology and Laryngology, 2012, 121, 355-363.	1.1	16
111	A wavelet-based approach for a continuous analysis of phonovibrograms. , 2012, 2012, 4410-3.		1
112	Spatiotemporal analysis of vocal fold vibrations between children and adults. Laryngoscope, 2012, 122, 2511-2518.	2.0	41
113	Effects of the Epilarynx Area on Vocal Fold Dynamics and the Primary Voice Signal. Journal of Voice, 2012, 26, 285-292.	1.5	16
114	Analysis of Vocal Fold Function From Acoustic Data Simultaneously Recorded With High-Speed Endoscopy. Journal of Voice, 2012, 26, 726-733.	1.5	21
115	A method for characterizing stapes prostheses by their mechanical transfer function. Medical Engineering and Physics, 2012, 34, 659-663.	1.7	1
116	Optical 3-D Metric Measurements of Local Vocal Fold Deformation Characteristics in an In Vitro Setup. IEEE Transactions on Biomedical Engineering, 2011, 58, 2758-2766.	4.2	4
117	Multiparametric Analysis of Vocal Fold Vibrations in Healthy and Disordered Voices in High-Speed Imaging. Journal of Voice, 2011, 25, 576-590.	1.5	89
118	Support Vector Machine Classification of Vocal Fold Vibrations Based on Phonovibrogram Features. , 2011, , .		5
119	Editorial [Hot Topic: The Origin of Human Voice Production within the Larynx: The Interaction between Air Flow - Tissue Dynamics - Resulting Acoustical Signal (Guest Editor: Michael Dollinger)]. Current Bioinformatics, 2011, 6, 269-269.	1.5	0
120	Does direct MR galactography have the potential to become an alternative diagnostic tool in patients with pathological nipple discharge?. Clinical Imaging, 2011, 35, 85-93.	1.5	18
121	Simulation based estimation of dynamic mechanical properties for viscoelastic materials used for vocal fold models. Journal of Sound and Vibration, 2011, 330, 4447-4459.	3.9	39
122	Optimized transformation of the glottal motion into a mechanical model. Medical Engineering and Physics, 2011, 33, 210-217.	1.7	9
123	Experiments on Analysing Voice Production: Excised (Human, Animal) and In Vivo (Animal) Approaches. Current Bioinformatics, 2011, 6, 286-304.	1.5	30
124	Substitute Voice Production: Quantification of PE Segment Vibrations Using a Biomechanical Model. IEEE Transactions on Biomedical Engineering, 2011, 58, 2767-2776.	4.2	9
125	Computation of physiological human vocal fold parameters by mathematical optimization of a biomechanical model. Journal of the Acoustical Society of America, 2011, 130, 948-964.	1.1	22
126	Material parameter computation for multi-layered vocal fold models. Journal of the Acoustical Society of America, 2011, 129, 2168-2180.	1.1	7

#	Article	IF	CITATIONS
127	Assessment of local vocal fold deformation characteristics in an <i>in vitro</i> static tensile test. Journal of the Acoustical Society of America, 2011, 130, 977-985.	1.1	12
128	Effects of Consonant-Vowel Transitions in Speech Stimuli on Cortical Auditory Evoked Potentials in Adults. The Open Neurology Journal, 2011, 5, 37-45.	0.4	9
129	Objective detection and quantification of mucosal wave propagation. Journal of the Acoustical Society of America, 2010, 128, EL347-EL353.	1.1	15
130	Clinical value of acoustic voice measures: a retrospective study. European Archives of Oto-Rhino-Laryngology, 2010, 267, 1261-1271.	1.6	26
131	Optical Reconstruction of High-Speed Surface Dynamics in an Uncontrollable Environment. IEEE Transactions on Medical Imaging, 2010, 29, 1979-1991.	8.9	29
132	Classification of functional voice disorders based on phonovibrograms. Artificial Intelligence in Medicine, 2010, 49, 51-59.	6.5	39
133	Automatic diagnosis of vocal fold paresis by employing phonovibrogram features and machine learning methods. Computer Methods and Programs in Biomedicine, 2010, 99, 275-288.	4.7	38
134	Assessment of the variability of vocal fold dynamics within and between recordings with highâ€speed imaging and by phonovibrogram. Laryngoscope, 2010, 120, 981-987.	2.0	40
135	Measurement of the elasticity modulus of soft tissues. Journal of Biomechanics, 2010, 43, 1540-1545.	2.1	18
136	Experimental flow study of modeled regular and irregular glottal closure types. Logopedics Phoniatrics Vocology, 2010, 35, 45-50.	1.0	6
137	Biomechanical modeling of the three-dimensional aspects of human vocal fold dynamics. Journal of the Acoustical Society of America, 2010, 127, 1014-1031.	1.1	36
138	Flow-structure-acoustic interaction in a human voice model. Journal of the Acoustical Society of America, 2009, 125, 1351-1361.	1.1	66
139	Correlation between Psychometric Tests and Mismatch Negativity in Preschool Children. Folia Phoniatrica Et Logopaedica, 2009, 61, 206-216.	1.1	19
140	The Next Step in Voice Assessment: High-Speed Digital Endoscopy and Objective Evaluation. Current Bioinformatics, 2009, 4, 101-111.	1.5	46
141	A 2D finite-element scheme for fluid–solid–acoustic interactions and its application to human phonation. Computer Methods in Applied Mechanics and Engineering, 2009, 198, 3321-3334.	6.6	61
142	Statistical detection and analysis of mismatch negativity derived by a multi-deviant design from normal hearing children. Hearing Research, 2009, 247, 128-136.	2.0	21
143	Variability of Normal Vocal Fold Dynamics for Different Vocal Loading in One Healthy Subject Investigated by Phonovibrograms. Journal of Voice, 2009, 23, 175-181.	1.5	38
144	The Influence of Temporal Stimulus Changes on Speech-Evoked Potentials Revealed by Approximations of Tone-Evoked Waveforms. Ear and Hearing, 2009, 30, 16-22.	2.1	9

#	Article	IF	CITATIONS
145	Voice Pathology Classification by Using Features from High-Speed Videos. Lecture Notes in Computer Science, 2009, , 315-324.	1.3	0
146	High-speed video analysis of the phonation onset, with an application to the diagnosis of functional dysphonias. Medical Engineering and Physics, 2008, 30, 59-66.	1.7	46
147	Calibration of laryngeal endoscopic high-speed image sequences by an automated detection of parallel laser line projections. Medical Image Analysis, 2008, 12, 300-317.	11.6	23
148	Phonovibrography: Mapping High-Speed Movies of Vocal Fold Vibrations Into 2-D Diagrams for Visualizing and Analyzing the Underlying Laryngeal Dynamics. IEEE Transactions on Medical Imaging, 2008, 27, 300-309.	8.9	140
149	Spatiotemporal classification of vocal fold dynamics by a multimass model comprising time-dependent parameters. Journal of the Acoustical Society of America, 2008, 123, 2324-2334.	1.1	41
150	Biomechanical modeling of laryngeal dynamics. , 2008, , .		0
151	Preliminary Study on the Quantitative Analysis of Vocal Loading Effects on Vocal Fold Dynamics Using Phonovibrograms. Annals of Otology, Rhinology and Laryngology, 2008, 117, 484-493.	1.1	23
152	Spatio-temporal quantification of vocal fold vibrations using high-speed videoendoscopy and a biomechanical model. Journal of the Acoustical Society of America, 2008, 123, 2717-2732.	1.1	41
153	Phonovibrography: The Fingerprint of Vocal Fold Vibrations. , 2007, , .		1
154	Wavelet-based analysis of MMN responses in children. Biomedizinische Technik, 2007, 52, 111-116.	0.8	10
155	Clinically evaluated procedure for the reconstruction of vocal fold vibrations from endoscopic digital high-speed videos. Medical Image Analysis, 2007, 11, 400-413.	11.6	139
156	Model-based classification of nonstationary vocal fold vibrations. Journal of the Acoustical Society of America, 2006, 120, 1012-1027.	1.1	57
157	Visualization and Quantification of the Medial Surface Dynamics of an Excised Human Vocal Fold During Phonation. Journal of Voice, 2006, 20, 401-413.	1.5	84
158	The influence of epilarynx area on vocal fold dynamics. Otolaryngology - Head and Neck Surgery, 2006, 135, 724-729.	1.9	28
159	Computation of the three-dimensional medial surface dynamics of the vocal folds. Journal of Biomechanics, 2006, 39, 369-374.	2.1	44
160	The Pitch Rise Paradigm: A New Task for Real-Time Endoscopy of Non-Stationary Phonation. Folia Phoniatrica Et Logopaedica, 2006, 58, 175-185.	1.1	26
161	A Quantitative Study of the Medial Surface Dynamics of an In Vivo Canine Vocal Fold during Phonation. Laryngoscope, 2005, 115, 1646-1654.	2.0	27
162	Medial surface dynamics of anin vivocanine vocal fold during phonation. Journal of the Acoustical Society of America, 2005, 117, 3174-3183.	1.1	71

#	Article	IF	CITATIONS
163	Quantitative Investigation of the Vibration Pattern of the Substitute Voice Generator. IEEE Transactions on Biomedical Engineering, 2004, 51, 1394-1400.	4.2	31
164	Glissando: laryngeal motorics and acoustics. Journal of Voice, 2003, 17, 370-376.	1.5	33
165	Visualisierung und Interpretation von Stimmlippenschwingungen. Informatik Aktuell, 2003, , 240-243.	0.6	1
166	Modellierung und Visualisierung der dynamischen Eigenschaften des Tongenerators bei der Ersatzstimmgebung. Informatik Aktuell, 2003, , 264-268.	0.6	0
167	Vibration parameter extraction from endoscopic image series of the vocal folds. IEEE Transactions on Biomedical Engineering, 2002, 49, 773-781.	4.2	96
168	Highâ€Precision Measurement of the Vocal Fold Length and Vibratory Amplitudes. Laryngoscope, 2002, 112, 1043-1049.	2.0	84