Oguz Okay

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8482141/oguz-okay-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

204 9,181 51 87 g-index

208 9,965 4 6.74 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
204	Butyl rubber-based interpenetrating polymer networks with side chain crystallinity: Self-healing and shape-memory polymers with tunable thermal and mechanical properties. <i>European Polymer Journal</i> , 2022 , 168, 111098	5.2	1
203	Solvent-Free UV Polymerization of -Octadecyl Acrylate in Butyl Rubber: A Simple Way to Produce Tough and Smart Polymeric Materials at Ambient Temperature. <i>ACS Applied Materials & Ambient Temperature</i> . <i>ACS Applied Materials & Ambient Temperature</i> . <i>ACS Applied Materials & Ambient Temperature</i> .	9.5	6
202	Performance of butyl rubber-based macroporous sorbents as passive samplers. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 3766-3773	5.1	2
201	Re-Entrant Conformation Transition in Hydrogels. <i>Gels</i> , 2021 , 7,	4.2	1
200	Bisphosphonate-functionalized poly(amido amine) crosslinked 2-hydroxyethyl methacrylate hydrogel as tissue engineering scaffold. <i>European Polymer Journal</i> , 2021 , 159, 110732	5.2	O
199	Preparation of dextran cryogels for separation processes of binary dye and pesticide mixtures from aqueous solutions. <i>Polymer Engineering and Science</i> , 2020 , 60, 1890-1901	2.3	4
198	Highly stretchable and thermally healable polyampholyte hydrogels via hydrophobic modification. <i>Colloid and Polymer Science</i> , 2020 , 298, 273-284	2.4	11
197	How to Design Both Mechanically Strong and Self-Healable Hydrogels?. <i>Advances in Polymer Science</i> , 2020 , 21-62	1.3	3
196	Hydrophobically modified nanocomposite hydrogels with self-healing ability. <i>Journal of Applied Polymer Science</i> , 2020 , 137, 48853	2.9	3
195	Alendronate-functionalized poly(amido amine) cryogels of high-toughness for biomedical applications. <i>Polymer</i> , 2020 , 190, 122248	3.9	5
194	Stretchable silk fibroin hydrogels. International Journal of Biological Macromolecules, 2020, 161, 1371-1	13 8 .09	6
193	Behaviors of quenched polyampholytes in solution and gel state. <i>Polymers for Advanced Technologies</i> , 2020 , 32, 2639	3.2	4
192	Macroporous methacrylated hyaluronic acid cryogels of high mechanical strength and flow-dependent viscoelasticity. <i>Carbohydrate Polymers</i> , 2020 , 229, 115458	10.3	10
191	Semicrystalline physical hydrogels with shape-memory and self-healing properties. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 1581-1596	7.3	30
190	Structure-property relationships of novel phosphonate-functionalized networks and gels of poly(Eamino esters). <i>European Polymer Journal</i> , 2019 , 113, 155-164	5.2	3
189	One-Step Injectable and Bioreducible Poly(EAmino Ester) Hydrogels as Controlled Drug Delivery Platforms. <i>ACS Applied Polymer Materials</i> , 2019 , 1, 1724-1734	4.3	14
188	Semi-Crystalline, Three-Segmented Hybrid Gels with Multiple Shape-Memory Effect. <i>Macromolecular Symposia</i> , 2019 , 385, 1800164	0.8	5

(2017-2019)

187	A Self-Healing and Highly Stretchable Polyelectrolyte Hydrogel via Cooperative Hydrogen Bonding as a Superabsorbent Polymer. <i>Macromolecules</i> , 2019 , 52, 3257-3267	5.5	45
186	Cryogel composites based on hyaluronic acid and halloysite nanotubes as scaffold for tissue engineering. <i>International Journal of Biological Macromolecules</i> , 2019 , 130, 627-635	7.9	50
185	Single-, Double-, and Triple-Network Macroporous Rubbers as a Passive Sampler. <i>ACS Applied Materials & Double Samp; Interfaces</i> , 2019 , 11, 28317-28326	9.5	3
184	Cryogenic formation-structure-property relationships of poly(2-acrylamido-2-methyl-1-propanesulfonic acid) cryogels. <i>Polymer</i> , 2019 , 178, 121603	3.9	3
183	High-strength and self-recoverable silk fibroin cryogels with anisotropic swelling and mechanical properties. <i>International Journal of Biological Macromolecules</i> , 2019 , 122, 1279-1289	7.9	26
182	Mechanically robust and stretchable silk/hyaluronic acid hydrogels. <i>Carbohydrate Polymers</i> , 2019 , 208, 413-420	10.3	38
181	Highly Stretchable and Rapid Self-Recoverable Cryogels Based on Butyl Rubber as Reusable Sorbent. <i>Gels</i> , 2019 , 5,	4.2	16
180	Highly Stretchable DNA/Clay Hydrogels with Self-Healing Ability. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 8296-8306	9.5	32
179	Hybrid cross-linked poly(2-acrylamido-2-methyl-1-propanesulfonic acid) hydrogels with tunable viscoelastic, mechanical and self-healing properties. <i>Reactive and Functional Polymers</i> , 2018 , 123, 70-79	4.6	27
178	Interfacing Soft and Hard Materials with Triple-Shape-Memory and Self-Healing Functions. <i>Macromolecules</i> , 2018 , 51, 2437-2446	5.5	27
177	Toughness improvement and anisotropy in semicrystalline physical hydrogels. <i>Polymer</i> , 2018 , 151, 208-	23.3	4
176	Bisphosphonic Acid-Functionalized Cross-Linkers to Tailor Hydrogel Properties for Biomedical Applications. <i>ACS Omega</i> , 2018 , 3, 8638-8647	3.9	9
175	Monitoring the Instant Creation of a New Fluorescent Signal for Evaluation of DNA Conformation Based on Intercalation Complex. <i>Journal of Fluorescence</i> , 2018 , 28, 1325-1332	2.4	2
174	High-strength silk fibroin scaffolds with anisotropic mechanical properties. <i>Polymer</i> , 2017 , 112, 61-70	3.9	25
173	Polyampholyte hydrogels formed via electrostatic and hydrophobic interactions. <i>European Polymer Journal</i> , 2017 , 88, 191-204	5.2	36
172	Yielding Behavior of Tough Semicrystalline Hydrogels. <i>Macromolecules</i> , 2017 , 50, 3647-3654	5.5	51
171	Cryogelation within cryogels: Silk fibroin scaffolds with single-, double- and triple-network structures. <i>Polymer</i> , 2017 , 128, 47-56	3.9	23
170	Mechanically strong hyaluronic acid hydrogels with an interpenetrating network structure. European Polymer Journal, 2017, 94, 185-195	5.2	25

169	Reversibility of strain stiffening in silk fibroin gels. <i>International Journal of Biological Macromolecules</i> , 2017 , 95, 24-31	7.9	8
168	Nanocomposite DNA hydrogels with temperature sensitivity. <i>Polymer</i> , 2016 , 100, 169-178	3.9	10
167	Melt-Processable Shape-Memory Hydrogels with Self-Healing Ability of High Mechanical Strength. <i>Macromolecules</i> , 2016 , 49, 7442-7449	5.5	93
166	Nanostructural Evolution and Self-Healing Mechanism of Micellar Hydrogels. <i>Macromolecules</i> , 2016 , 49, 2281-2287	5.5	76
165	High-strength semi-crystalline hydrogels with self-healing and shape memory functions. <i>European Polymer Journal</i> , 2016 , 81, 12-23	5.2	37
164	Preparation and fracture process of high strength hyaluronic acid hydrogels cross-linked by ethylene glycol diglycidyl ether. <i>Reactive and Functional Polymers</i> , 2016 , 109, 42-51	4.6	26
163	Preparation and physical properties of hyaluronic acid-based cryogels. <i>Journal of Applied Polymer Science</i> , 2015 , 132,	2.9	44
162	Supramolecular Polymer Networks and Gels. Advances in Polymer Science, 2015,	1.3	22
161	Self-Healing Hydrogels Formed via Hydrophobic Interactions. <i>Advances in Polymer Science</i> , 2015 , 101-14	2 1.3	29
160	Mechanically strong triple network hydrogels based on hyaluronan and poly(N,N-dimethylacrylamide). <i>Soft Matter</i> , 2015 , 11, 8517-24	3.6	19
159	Self-healing poly(N-isopropylacrylamide) hydrogels. <i>European Polymer Journal</i> , 2015 , 72, 12-22	5.2	25
158	Self-Healing Poly(acrylic acid) Hydrogels: Effect of Surfactant. <i>Macromolecular Symposia</i> , 2015 , 358, 232	-238	12
157	Surfactant-induced healing of tough hydrogels formed via hydrophobic interactions. <i>Colloid and Polymer Science</i> , 2014 , 292, 511-517	2.4	21
156	Highly stretchable self-healing poly(N,N-dimethylacrylamide) hydrogels. <i>European Polymer Journal</i> , 2014 , 59, 113-121	5.2	64
155	Self-Healing Poly(acrylic acid) Hydrogels with Shape Memory Behavior of High Mechanical Strength. <i>Macromolecules</i> , 2014 , 47, 6889-6899	5.5	201
154	Nonionic Double and Triple Network Hydrogels of High Mechanical Strength. <i>Macromolecules</i> , 2014 , 47, 6430-6440	5.5	69
153	Porous rubber cryogels: effect of the gel preparation temperature. <i>Polymer Bulletin</i> , 2014 , 71, 1983-199	9 9 .4	5
152	Polymeric Cryogels. Advances in Polymer Science, 2014 ,	1.3	32

151	A Brief History of Polymeric Cryogels. Advances in Polymer Science, 2014, 1-48	1.3	78
150	Basic Principles of Cryotropic Gelation. <i>Advances in Polymer Science</i> , 2014 , 49-101	1.3	77
149	Synthesis and Structure Property Relationships of Cryogels. Advances in Polymer Science, 2014, 103-157	1.3	59
148	Autonomic self-healing in covalently crosslinked hydrogels containing hydrophobic domains. <i>Polymer</i> , 2013 , 54, 6381-6388	3.9	66
147	Self-healing polyacrylic acid hydrogels. <i>Soft Matter</i> , 2013 , 9, 10287	3.6	84
146	Self-healing hydrogels formed in catanionic surfactant solutions. <i>Soft Matter</i> , 2013 , 9, 2254	3.6	76
145	Macroporous silk fibroin cryogels. <i>Biomacromolecules</i> , 2013 , 14, 719-27	6.9	106
144	Ethidium bromide binding to DNA cryogels. <i>Reactive and Functional Polymers</i> , 2013 , 73, 442-450	4.6	24
143	Tough interpenetrating Pluronic F127/polyacrylic acid hydrogels. <i>Polymer</i> , 2013 , 54, 2979-2987	3.9	28
142	Shape Memory Hydrogels via Micellar Copolymerization of Acrylic Acid and n-Octadecyl Acrylate in Aqueous Media. <i>Macromolecules</i> , 2013 , 46, 3125-3131	5.5	80
141	Swelling behavior of physical and chemical DNA hydrogels. <i>Journal of Applied Polymer Science</i> , 2013 , 128, 3330-3337	2.9	15
140	Structure optimization of self-healing hydrogels formed via hydrophobic interactions. <i>Polymer</i> , 2012 , 53, 5513-5522	3.9	142
139	Diepoxide-triggered conformational transition of silk fibroin: formation of hydrogels. <i>Biomacromolecules</i> , 2012 , 13, 1122-8	6.9	36
138	Dynamics and Large Strain Behavior of Self-Healing Hydrogels with and without Surfactants. <i>Macromolecules</i> , 2012 , 45, 1991-2000	5.5	191
137	Tough and Self-Healing Hydrogels Formed via Hydrophobic Interactions. <i>Macromolecules</i> , 2011 , 44, 499	7 ₅ 5 ₅ 005	i 569
136	Solution Cross-Linked Natural Rubber (NR)/Clay Aerogel Composites. <i>Macromolecules</i> , 2011 , 44, 923-93	15.5	51
135	DNA hydrogels: New functional soft materials. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2011 , 49, 551-556	2.6	32
134	Macroporous, responsive DNA cryogel beads. <i>Reactive and Functional Polymers</i> , 2011 , 71, 782-790	4.6	41

133	Dodecyl methacrylate as a crosslinker in the preparation of tough polyacrylamide hydrogels. <i>Polymer</i> , 2011 , 52, 694-699	3.9	43
132	Hierarchically macroporous cryogels of polyisobutylene and silica nanoparticles. <i>Langmuir</i> , 2010 , 26, 7574-81	4	24
131	Evidence of Strain Hardening in DNA Gels. <i>Macromolecules</i> , 2010 , 43, 1530-1538	5.5	34
130	Rheological behavior of polymerllay nanocomposite hydrogels: Effect of nanoscale interactions. Journal of Applied Polymer Science, 2010 , 116, NA-NA	2.9	7
129	Self-oscillating pH-responsive cryogels as possible candidates of soft materials for generating mechanical energy. <i>Journal of Applied Polymer Science</i> , 2010 , 118, 2981-2988	2.9	24
128	Macroporous rubber gels as reusable sorbents for the removal of oil from surface waters. <i>Reactive and Functional Polymers</i> , 2010 , 70, 585-595	4.6	49
127	Collapse of acrylamide-based polyampholyte hydrogels in water. <i>Journal of Applied Polymer Science</i> , 2009 , 113, 1375-1382	2.9	17
126	Preparation and characterization of single-hole macroporous organogel particles of high toughness and superfast responsivity. <i>European Polymer Journal</i> , 2009 , 45, 2033-2042	5.2	23
125	Design of high-toughness polyacrylamide hydrogels by hydrophobic modification. <i>Polymer</i> , 2009 , 50, 5449-5455	3.9	208
124	Macroporous hydrogel beads of high toughness and superfast responsivity. <i>Reactive and Functional Polymers</i> , 2009 , 69, 273-280	4.6	35
123	Evaluation of butyl rubber as sorbent material for the removal of oil and polycyclic aromatic hydrocarbons from seawater. <i>Environmental Science & Environmental Science & Env</i>	10.3	234
122	Formation of hydrogels by simultaneous denaturation and cross-linking of DNA. <i>Biomacromolecules</i> , 2009 , 10, 2652-61	6.9	51
121	General Properties of Hydrogels. Springer Series on Chemical Sensors and Biosensors, 2009, 1-14	2	75
120	Production of Macroporous Polymeric Materials by Phase Separation Polymerization 2009 , 3-22		1
119	Homogeneous Poly(acrylamide) Hydrogels Made by Large Size, Flexible Dimethacrylate Cross-Linkers. <i>Macromolecules</i> , 2008 , 41, 7759-7761	5.5	19
118	Rheological Behavior of Responsive DNA Hydrogels. <i>Macromolecules</i> , 2008 , 41, 8847-8854	5.5	64
117	Preparation of Homogeneous Hydrogels by Controlling the Crosslinker Reactivity and Availability. Journal of Macromolecular Science - Pure and Applied Chemistry, 2008 , 45, 769-775	2.2	14
116	Tough organogels based on polyisobutylene with aligned porous structures. <i>Polymer</i> , 2008 , 49, 4626-4	63,4)	31

(2006-2008)

115	Preparation of macroporous poly(acrylamide) hydrogels in DMSO/water mixture at subzero temperatures. <i>Polymer Bulletin</i> , 2008 , 60, 169-180	2.4	20
114	Equilibrium swelling behavior and elastic properties of polymerElay nanocomposite hydrogels. Journal of Applied Polymer Science, 2008, 109, 3714-3724	2.9	67
113	Formation of macroporous poly(acrylamide) hydrogels in DMSO/water mixture: Transition from cryogelation to phase separation copolymerization. <i>Reactive and Functional Polymers</i> , 2008 , 68, 1467-14	4 /1 5 ⁶	41
112	Macroporous Polyisobutylene Gels: A Novel Tough Organogel with Superfast Responsivity. <i>Macromolecules</i> , 2007 , 40, 8742-8749	5.5	65
111	Preparation of homogeneous polyacrylamide hydrogels by free-radical crosslinking copolymerization. <i>European Polymer Journal</i> , 2007 , 43, 2913-2921	5.2	32
110	Freezing as a path to build macroporous structures: Superfast responsive polyacrylamide hydrogels. <i>Polymer</i> , 2007 , 48, 195-204	3.9	100
109	Influence of the initiator system on the spatial inhomogeneity in acrylamide-based hydrogels. <i>Journal of Applied Polymer Science</i> , 2007 , 103, 3228-3237	2.9	30
108	Unusual swelling behavior of polymerflay nanocomposite hydrogels. <i>Polymer</i> , 2007 , 48, 5016-5023	3.9	61
107	Polyacrylamidetalay Nanocomposite Hydrogels: Rheological and Light Scattering Characterization. <i>Macromolecules</i> , 2007 , 40, 3378-3387	5.5	255
106	Preparation of Macroporous Acrylamide-based Hydrogels: Cryogelation under Isothermal Conditions. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 2007 , 44, 1195-1202	2.2	31
105	Macroporous Hydrogels from Smart Polymers 2007 , 269-297		3
104	Correlation between crosslinking efficiency and spatial inhomogeneity in poly(acrylamide) hydrogels. <i>Polymer Bulletin</i> , 2006 , 57, 631-641	2.4	52
103	Swellingdeswelling kinetics of ionic poly(acrylamide) hydrogels and cryogels. <i>Journal of Applied Polymer Science</i> , 2006 , 99, 319-325	2.9	45
102	Swellingdeswelling kinetics of poly(N-isopropylacrylamide) hydrogels formed in PEG solutions. <i>Journal of Applied Polymer Science</i> , 2006 , 99, 37-44	2.9	28
101	Superfast Responsive Ionic Hydrogels: Effect of the Monomer Concentration. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 2006 , 43, 1215-1225	2.2	14
100	Phase Transition of Acrylamide-Based Polyampholyte Gels in Water. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 2006 , 43, 1635-1649	2.2	6
99	Network Development in Mixed Step-Chain Growth Thioll/inyl Photopolymerizations. <i>Macromolecules</i> , 2006 , 39, 8832-8843	5.5	50
98	Effect of initial monomer concentration on the equilibrium swelling and elasticity of hydrogels. <i>European Polymer Journal</i> , 2006 , 42, 955-960	5.2	22

97	Reentrant conformation transition in poly(N,N-dimethylacrylamide) hydrogels in water B rganic solvent mixtures. <i>Polymer</i> , 2006 , 47, 561-568	3.9	46
96	Molecular Weight Development during Thiol E ne Photopolymerizations. <i>Macromolecules</i> , 2005 , 38, 450)1 -4 511	22
95	Superfast responsive ionic hydrogels with controllable pore size. <i>Polymer</i> , 2005 , 46, 8119-8127	3.9	86
94	Kinetic Modeling of Thiol-Ene Reactions with Both Step and Chain Growth Aspects. <i>Macromolecular Theory and Simulations</i> , 2005 , 14, 267-277	1.5	39
93	Effect of spatial gel inhomogeneity on the elastic modulus of strong polyelectrolyte hydrogels. <i>Polymer Bulletin</i> , 2005 , 54, 435-442	2.4	11
92	Spatial inhomogeneity in poly(acrylic acid) hydrogels. <i>Polymer</i> , 2005 , 46, 2595-2602	3.9	47
91	Suppression of inhomogeneities in hydrogels formed by free-radical crosslinking copolymerization. <i>Polymer</i> , 2005 , 46, 11407-11415	3.9	28
90	Shake gels based on Laponite P EO mixtures: effect of polymer molecular weight. <i>Designed Monomers and Polymers</i> , 2005 , 8, 453-462	3.1	32
89	Non-Gaussian elasticity of poly(2-acrylamido-2-methylpropane sulfonic acid) gels. <i>Polymer Bulletin</i> , 2004 , 52, 83	2.4	11
88	Swelling and elasticity of hydrogels based on poly(ethylene oxide) macroinimer. <i>Polymer International</i> , 2004 , 53, 237-242	3.3	16
87	Swelling and elasticity of poly (N-isopropylacrylamide-co-4-vinyl benzene sulfonic acid sodium salt) hydrogels. <i>Journal of Applied Polymer Science</i> , 2004 , 94, 135-141	2.9	6
86	Swelling, Elasticity and Spatial Inhomogeneity of Poly(N,N-dimethylacrylamide) Hydrogels Formed at Various Polymer Concentrations. <i>Macromolecular Chemistry and Physics</i> , 2004 , 205, 814-823	2.6	81
85	Minimization of spatial inhomogeneity in polystyrene gels formed by free-radical mechanism. <i>European Polymer Journal</i> , 2004 , 40, 579-587	5.2	16
84	Effect of swelling on spatial inhomogeneity in poly(acrylamide) gels formed at various monomer concentrations. <i>Polymer</i> , 2004 , 45, 2567-2576	3.9	31
83	Elasticity of poly(acrylamide) gel beads. <i>Polymer Bulletin</i> , 2003 , 50, 287-294	2.4	15
82	Swelling behavior of strong polyelectrolyte poly(N-t-butylacrylamide-co-acrylamide) hydrogels. <i>European Polymer Journal</i> , 2003 , 39, 877-886	5.2	47
81	Swelling and elasticity of ionic poly(N-isopropylacrylamide) gels immersed in the melt of poly(ethylene glycol) chains. <i>Polymer</i> , 2003 , 44, 2281-2288	3.9	2
80	Effect of hydrolysis on spatial inhomogeneity in poly(acrylamide) gels of various crosslink densities. <i>Polymer</i> , 2003 , 44, 5239-5250	3.9	69

(2000-2003)

79	Non-Gaussian elasticity of swollen poly(N-isopropylacrylamide) gels at high charge densities. <i>European Polymer Journal</i> , 2003 , 39, 2209-2216	5.2	20
78	Effect of Initial Monomer Concentration on Spatial Inhomogeneity in Poly(acrylamide) Gels. <i>Macromolecules</i> , 2003 , 36, 6856-6862	5.5	97
77	Volume Phase Transition of Polymer Networks in Polymeric Solvents. <i>Macromolecular Theory and Simulations</i> , 2002 , 11, 287	1.5	3
76	Swelling and Mechanical Properties of Solution-Crosslinked Poly(isobutylene) Gels. <i>Macromolecular Chemistry and Physics</i> , 2002 , 203, 663-672	2.6	9
<i>75</i>	Reentrant phase transition of poly(N-isopropylacrylamide) gels in polymer solutions: Thermodynamic analysis. <i>Journal of Applied Polymer Science</i> , 2002 , 85, 801-813	2.9	6
74	Modification of polyindole by the incorporation of pyrrole unit. <i>Journal of Applied Polymer Science</i> , 2002 , 85, 814-820	2.9	48
73	Real-time temperature and photon transmission measurements for monitoring phase separation during the formation of poly(N-isopropylacrylamide) gels. <i>Journal of Applied Polymer Science</i> , 2002 , 86, 3589-3595	2.9	20
72	SwellingEhrinking hysteresis of poly(N-isopropylacrylamide) gels in sodium dodecylbenzenesulfonate solutions. <i>Journal of Applied Polymer Science</i> , 2002 , 83, 1228-1232	2.9	19
71	Macroporous poly(N-isopropylacrylamide) networks. <i>Polymer Bulletin</i> , 2002 , 48, 499-506	2.4	29
70	Temperature dependent swelling behavior of ionic poly(N-isopropylacrylamide) gels in PEG solutions. <i>Polymer Bulletin</i> , 2002 , 49, 181-188	2.4	12
69	Charge density dependence of elastic modulus of strong polyelectrolyte hydrogels. <i>Polymer</i> , 2002 , 43, 1215-1221	3.9	117
68	Temperature sensitive poly(N-t-butylacrylamide-co-acrylamide) hydrogels: synthesis and swelling behavior. <i>Polymer</i> , 2002 , 43, 5017-5026	3.9	65
67	Rubber Elasticity of Poly(N-isopropylacrylamide) Gels at Various Charge Densities. <i>Macromolecules</i> , 2002 , 35, 5616-5622	5.5	90
66	Inhomogeneities in poly(acrylamide) gels: position-dependent elastic modulus measurements. <i>Polymer Bulletin</i> , 2001 , 46, 409-418	2.4	31
65	Elastic behaviour of solution cross-linked poly(isobutylene) gels under large compression. <i>Polymer</i> , 2001 , 42, 3771-3777	3.9	3
64	Macroporous poly(N -isopropyl)acrylamide networks: formation conditions. <i>Polymer</i> , 2001 , 42, 7639-7	653 9	147
63	Reentrant Phase Transition of Strong Polyelectrolyte Poly(N-isopropylacrylamide) Gels in PEG Solutions. <i>Macromolecular Chemistry and Physics</i> , 2001 , 202, 304-312	2.6	25
62	Gel growth in free radical crosslinking copolymerization: Effect of inactive gel radicals. <i>Macromolecular Theory and Simulations</i> , 2000 , 9, 354-361	1.5	2

61	Acrylamide/2-acrylamido-2-methylpropane sulfonic acid sodium salt-based hydrogels: synthesis and characterization. <i>Polymer</i> , 2000 , 41, 3693-3704	3.9	244
60	Swelling of strong polyelectrolyte hydrogels in polymer solutions: effect of ion pair formation on the polymer collapse. <i>Polymer</i> , 2000 , 41, 5737-5747	3.9	52
59	Phase separation during the formation of poly(acrylamide) hydrogels. <i>Polymer</i> , 2000 , 41, 5729-5735	3.9	35
58	Swelling behavior of poly(acrylamide-co-sodium acrylate) hydrogels in aqueous salt solutions: theory versus experiments. <i>European Polymer Journal</i> , 2000 , 36, 393-399	5.2	77
57	Macroporous copolymer networks. <i>Progress in Polymer Science</i> , 2000 , 25, 711-779	29.6	633
56	In situ photon transmission technique for monitoring phase separation in real time during gelation. <i>Polymer Bulletin</i> , 2000 , 45, 281-285	2.4	5
55	The effect of preparation temperature on the swelling behavior of poly (N-isopropylacrylamide) gels. <i>Polymer Bulletin</i> , 2000 , 45, 175-182	2.4	18
54	Solution Cross-Linked Poly(isobutylene) Gels: Synthesis and Swelling Behavior. <i>Macromolecules</i> , 2000 , 33, 4822-4827	5.5	51
53	Phase separation in free-radical crosslinking copolymerization: formation of heterogeneous polymer networks. <i>Polymer</i> , 1999 , 40, 4117-4129	3.9	51
52	Free-radical crosslinking copolymerization of styrene and divinylbenzene: real time monitoring of the gel effect using fluorescence probe. <i>Polymer</i> , 1999 , 40, 6179-6187	3.9	65
51	Observation of critical opalescence in free radical crosslinking copolymerization of styrene and divinylbenzene by fluorescence method. <i>European Polymer Journal</i> , 1999 , 35, 2025-2029	5.2	9
50	Heterogeneities during the formation of poly(sodium acrylate) hydrogels. <i>Polymer Bulletin</i> , 1999 , 43, 425-431	2.4	14
49	Pore memory of macroporous styrenedivinylbenzene copolymers. <i>Journal of Applied Polymer Science</i> , 1999 , 71, 1055-1062	2.9	26
48	Formation of macroporous styrenedivinylbenzene copolymer networks: Theory vs. experiments. Journal of Applied Polymer Science, 1999 , 74, 2181-2195	2.9	19
47	Swelling of polyacrylamide gels in polyacrylamide solutions 1998 , 36, 1313-1320		26
46	Structure and protein separation efficiency of poly(N-isopropylacrylamide) gels: Effect of synthesis conditions. <i>Journal of Applied Polymer Science</i> , 1998 , 67, 805-814	2.9	73
45	Swelling behavior of anionic acrylamide-based hydrogels in aqueous salt solutions: Comparison of experiment with theory. <i>Journal of Applied Polymer Science</i> , 1998 , 70, 567-575	2.9	78
44	Effects of cyclization and electrostatic interactions on the termination rate of macroradicals in free-radical crosslinking copolymerization. <i>Polymer Bulletin</i> , 1998 , 40, 491-498	2.4	11

43	Heterogeneities in polyacrylamide gels immersed in acetone-water mixtures. <i>Polymer Bulletin</i> , 1998 , 41, 363-370	2.4	6
42	Macroporous styrene-divinylbenzene copolymers: Formation of stable porous structures during the copolymerization. <i>Polymer Bulletin</i> , 1998 , 41, 379-385	2.4	22
41	Microgels-Intramolecularly Crosstiked Macromolecules with a Globular Structure 1998 , 139-234		190
40	Effects of cyclization and pendant vinyl group reactivity on the swelling behavior of polyacrylamide gels. <i>Polymer Bulletin</i> , 1997 , 39, 233-239	2.4	20
39	Phase transition of polyacrylamide gels in PEG solutions. <i>Polymer Gels and Networks</i> , 1997 , 5, 167-184		14
38	Swelling of polyacrylamide gels in aqueous solutions of ethylene glycol oligomers. <i>Polymer Gels and Networks</i> , 1997 , 5, 339-356		12
37	Gel formation by chain-crosslinking photopolymerization of methyl methacrylate and ethylene glycol dimethacrylate. <i>Polymer</i> , 1997 , 38, 1187-1196	3.9	49
36	Real time monitoring of polymerization rate of methyl methacrylate using fluorescence probe. <i>Polymer</i> , 1997 , 38, 1693-1698	3.9	54
35	Formation and structure of polyacrylamide gels. <i>Journal of Applied Polymer Science</i> , 1996 , 60, 971-979	2.9	135
34	Kinetics of emulsifierfree emulsion polymerization of methyl methacrylate. <i>Journal of Applied Polymer Science</i> , 1996 , 61, 485-493	2.9	90
33	Determination of reaction activation energy during gelation in free radical crosslinking copolymerization using the steady-state fluorescence method. <i>Journal of Applied Polymer Science</i> , 1996 , 61, 2279-2284	2.9	20
32	In situ fluorescence experiments to test the reliability of random bond and site bond percolation models during sol-gel transition in free-radical crosslinking copolymerization. <i>Polymer</i> , 1996 , 37, 2049-2	2033	39
31	Size distribution of polymers during the photoinitiated free-radical copolymerization of methyl methacrylate and ethylene glycol dimethacrylate. <i>Polymer Bulletin</i> , 1996 , 37, 207-213	2.4	11
30	Formation and structure of polyacrylamide gels 1996 , 60, 971		1
29	Kinetics of emulsifierfiree emulsion polymerization of methyl methacrylate 1996 , 61, 485		2
28	Kinetics of emulsifier f ree emulsion polymerization of methyl methacrylate 1996 , 61, 485		2
27	Effect of diluents on the porous structure of crosslinked poly(methyl methacrylate) beads. <i>Polymer Bulletin</i> , 1995 , 35, 511-516	2.4	15
26	Free-radical crosslinking copolymerization: Effect of cyclization on diffusion-controlled termination at low conversion. <i>Polymer</i> , 1995 , 36, 2413-2419	3.9	48

25	Cyclization and Reduced Pendant Vinyl Group Reactivity during the Free-Radical Crosslinking Polymerization of 1,4-Divinylbenzene. <i>Macromolecules</i> , 1995 , 28, 2728-2737	5.5	84
24	Critical properties for gelation in free-radical crosslinking copolymerization. <i>Macromolecular Theory and Simulations</i> , 1995 , 4, 967-981	1.5	16
23	Gel formation in free-radical crosslinking copolymerization. <i>Journal of Applied Polymer Science</i> , 1995 , 56, 477-483	2.9	12
22	Kinetics of gelation in free radical crosslinking copolymerization. <i>Polymer</i> , 1994 , 35, 2613-2618	3.9	24
21	Pendant vinyl group reactivity during the free-radical copolymerization of methyl methacrylate and ethylene glycol dimethacrylate. <i>Polymer Bulletin</i> , 1994 , 33, 665-672	2.4	12
20	Gel properties in free radical crosslinking copolymerization: A kinetic approach. <i>Macromolecular Theory and Simulations</i> , 1994 , 3, 417-426	1.5	6
19	Fluorescence technique for studying the sol-gel transition in the free-radical crosslinking copolymerization of methyl methacrylate and ethylene glycol dimethacrylate. <i>Chemical Physics Letters</i> , 1994 , 229, 537-540	2.5	51
18	Kinetic modelling of network formation and properties in free-radical crosslinking copolymerization. <i>Polymer</i> , 1994 , 35, 796-807	3.9	46
17	Intramolecularly crosslinked macromolecules Formation and structure, characterization and particle properties. <i>Polymer International</i> , 1993 , 30, 519-523	3.3	10
16	Synthesis and formation mechanism of porous 2-hydroxyethyl methacrylate thylene glycol dimethacrylate copolymer beads. <i>Journal of Applied Polymer Science</i> , 1992 , 46, 401-410	2.9	55
15	Formation and structural characteristics of porous ethylene glycol dimethacrylate networks. Journal of Applied Polymer Science, 1992 , 46, 421-434	2.9	34
14	Anionic dispersion polymerization of 1,4-divinylbenzene. <i>Macromolecules</i> , 1990 , 23, 2623-2628	5.5	49
13	Formation and structural characteristics of loosely crosslinked styrene-divinylbenzene networks. <i>Die Makromolekulare Chemie</i> , 1988 , 189, 2201-2217		20
12	Styrene-divinylbenzene copolymers. VI. Porosity formation in the presence of toluene-cyclohexanol mixtures as inert diluents. <i>Angewandte Makromolekulare Chemie</i> , 1988 , 157, 1-13		28
11	Styrene-divinylbenzene copolymers. VII. Stability of the porous structures formed in toluene II cyclohexanol mixtures. <i>Angewandte Makromolekulare Chemie</i> , 1988 , 157, 15-21		12
10	Styrene-divinylbenzene copolymers, V. Inhomogeneity in the structure and the average degree of swelling. <i>Angewandte Makromolekulare Chemie</i> , 1987 , 153, 125-134		18
9	Porous maleic anhydride\(\text{Ityrene}\(\text{divinylbenzene copolymer beads.} \) Journal of Applied Polymer Science, \(1987, 34, 307-317 \)	2.9	5
8	Styrene divinylbenzene copolymers, IV. Porosity changes during chloromethylation. <i>Angewandte Makromolekulare Chemie</i> , 1986 , 143, 209-214		5

LIST OF PUBLICATIONS

7	Heterogeneous styrenedivinylbenzene copolymers in collapsed and reexpanded states. <i>Journal of Applied Polymer Science</i> , 1986 , 31, 1785-1795	2.9	23
6	Heterogeneous styrenellivinylbenzene copolymers. Stability conditions of the porous structures. <i>Journal of Applied Polymer Science</i> , 1986 , 32, 5533-5542	2.9	26
5	Phase separation in the synthesis of styrenedivinylbenzene copolymers with di-2-ethylhexyl phthalate as diluent. <i>Journal of Applied Polymer Science</i> , 1985 , 30, 2065-2074	2.9	22
4	Boron pollution in the Simav River, Turkey and various methods of boron removal. <i>Water Research</i> , 1985 , 19, 857-862	12.5	78
3	WasserlBliche kationisch modifizierte copolymere mit acrylamid. <i>Angewandte Makromolekulare Chemie</i> , 1984 , 122, 21-31		1
2	Stark basische ionenaustauscher auf guanidiniumsalz-formaldehyd-aceton-basis. <i>Angewandte Makromolekulare Chemie</i> , 1984 , 127, 203-209		3
1	Shape-Memory Semicrystalline Polymeric Materials Based on Various Rubbers. <i>Macromolecular Materials and Engineering</i> ,2100776	3.9	1