
Glenn F Rall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8482094/publications.pdf Version: 2024-02-01

CLENN F RALL

#	Article	IF	CITATIONS
1	Identification of African Elephant Polyomavirus in wild elephants and the creation of a vector expressing its viral tumor antigens to transform elephant primary cells. PLoS ONE, 2021, 16, e0244334.	2.5	2
2	Noncanonical Transmission of a Measles Virus Vaccine Strain from Neurons to Astrocytes. MBio, 2021, 12, .	4.1	4
3	Murine BST2/tetherin promotes measles virus infection of neurons. Virology, 2021, 563, 38-43.	2.4	4
4	Benefits and Perils of Necroptosis in Influenza Virus Infection. Journal of Virology, 2020, 94, .	3.4	33
5	Interferon Control of Neurotropic Viral Infections. Trends in Immunology, 2019, 40, 842-856.	6.8	6
6	Immune-Mediated Control of a Dormant Neurotropic RNA Virus Infection. Journal of Virology, 2019, 93, .	3.4	15
7	Measles Virus Persistent Infection of Human Induced Pluripotent Stem Cells. Cellular Reprogramming, 2018, 20, 17-26.	0.9	9
8	T cell activation triggers reversible inosine-5′-monophosphate dehydrogenase assembly. Journal of Cell Science, 2018, 131, .	2.0	37
9	What Kaplan-Meier survival curves don't tell us about CNS disease. Journal of Neuroimmunology, 2017, 308, 25-29.	2.3	1
10	MiRNA-124 is a link between measles virus persistent infection and cell division of human neuroblastoma cells. PLoS ONE, 2017, 12, e0187077.	2.5	9
11	CD4 + T cells require either B cells or CD8 + T cells to control spread and pathogenesis of a neurotropic infection. Virology, 2016, 499, 196-202.	2.4	9
12	Keeping it in check: chronic viral infection and antiviral immunity in the brain. Nature Reviews Neuroscience, 2016, 17, 766-776.	10.2	49
13	Get It through Your Thick Head: Emerging Principles in Neuroimmunology and Neurovirology Redefine Central Nervous System "Immune Privilege― ACS Chemical Neuroscience, 2016, 7, 435-441.	3.5	21
14	Interferon gamma induces protective non anonical signaling pathways in primary neurons. Journal of Neurochemistry, 2015, 135, 309-322.	3.9	35
15	Here I Am, Despite Myself. PLoS Pathogens, 2015, 11, e1005106.	4.7	0
16	Homeostatic interferon expression in neurons is sufficient for early control of viral infection. Journal of Neuroimmunology, 2015, 279, 11-19.	2.3	33
17	Everything You Always Wanted to Know About Rabies Virus (But Were Afraid to Ask). Annual Review of Virology, 2015, 2, 451-471.	6.7	114
18	Bst2/Tetherin Is Induced in Neurons by Type I Interferon and Viral Infection but Is Dispensable for Protection against Neurotropic Viral Challenge. Journal of Virology, 2015, 89, 11011-11018.	3.4	24

GLENN F RALL

#	Article	IF	CITATIONS
19	Principles of Virology, Volume I: Molecular Biology. , 2015, , .		14
20	Principles of Virology, Bundle. , 2015, , .		120
21	Immune Clearance of Attenuated Rabies Virus Results in Neuronal Survival with Altered Gene Expression. PLoS Pathogens, 2012, 8, e1002971.	4.7	46
22	STAT1-Independent Control of a Neurotropic Measles Virus Challenge in Primary Neurons and Infected Mice. Journal of Immunology, 2012, 188, 1915-1923.	0.8	28
23	Extended JAK activation and delayed STAT1 dephosphorylation contribute to the distinct signaling profile of CNS neurons exposed to interferon-gamma. Journal of Neuroimmunology, 2012, 251, 33-38.	2.3	14
24	CNS Recruitment of CD8+ T Lymphocytes Specific for a Peripheral Virus Infection Triggers Neuropathogenesis during Polymicrobial Challenge. PLoS Pathogens, 2011, 7, e1002462.	4.7	13
25	Blue Moon Neurovirology: The Merits of Studying Rare CNS Diseases of Viral Origin. Journal of NeuroImmune Pharmacology, 2010, 5, 443-455.	4.1	18
26	Lymphocytic Choriomeningitis Virus-Induced Mortality in Mice Is Triggered by Edema and Brain Herniation. Journal of Virology, 2010, 84, 312-320.	3.4	19
27	Response to Protocol Review Scenario: A compromise for co-PIs. Lab Animal, 2007, 36, 16-16.	0.4	Ο
28	Neurokinin-1 enables measles virus trans-synaptic spread in neurons. Virology, 2007, 362, 235-244.	2.4	81
29	Altered levels of STAT1 and STAT3 influence the neuronal response to interferon gamma. Journal of Neuroimmunology, 2007, 192, 145-156.	2.3	27
30	Tissue-Specific Splicing of the Herpes Simplex Virus Type 1 Latency-Associated Transcript (LAT) Intron in LAT Transgenic Mice. Journal of Virology, 2006, 80, 9414-9423.	3.4	17
31	Poliovirus replication and spread in primary neuron cultures. Virology, 2005, 340, 10-20.	2.4	21
32	Measles Virus 1998–2002: Progress and Controversy. Annual Review of Microbiology, 2003, 57, 343-367.	7.3	39
33	Measles Virus Infection Induces Chemokine Synthesis by Neurons. Journal of Immunology, 2003, 171, 3102-3109.	0.8	55
34	Neuronal Survival Strategies in the Face of RNA Viral Infection. Journal of Infectious Diseases, 2002, 186, S215-S219.	4.0	21
35	Immune-Mediated Protection from Measles Virus-Induced Central Nervous System Disease Is Noncytolytic and Gamma Interferon Dependent. Journal of Virology, 2002, 76, 4497-4506.	3.4	143
36	Murine Coronavirus Spike Glycoprotein Mediates Degree of Viral Spread, Inflammation, and Virus-Induced Immunopathology in the Central Nervous System. Virology, 2002, 301, 109-120.	2.4	80

GLENN F RALL

#	Article	IF	CITATIONS
37	Model Systems: Transgenic mouse models for measles pathogenesis. Trends in Microbiology, 2001, 9, 19-23.	7.7	35
38	Protection of CD3 δKnockout Mice from Lymphocytic Choriomeningitis Virus-Induced Immunopathology: Implications for Viral Neuroinvasion. Virology, 2000, 269, 248-256.	2.4	13
39	The Application of Transgenic and Knockout Mouse Technology for the Study of Viral Pathogenesis. Virology, 2000, 271, 220-226.	2.4	13
40	Measles Virus Spread between Neurons Requires Cell Contact but Not CD46 Expression, Syncytium Formation, or Extracellular Virus Production. Journal of Virology, 2000, 74, 1908-1918.	3.4	141
41	Immune Response-Mediated Protection of Adult but Not Neonatal Mice from Neuron-Restricted Measles Virus Infection and Central Nervous System Disease. Journal of Virology, 1999, 73, 1795-1801.	3.4	68
42	Aberrant Expression of a Cytokeratin in a Subset of Hepatocytes during Chronic WHV Infection. Virology, 1998, 249, 68-79.	2.4	4
43	CNS Neurons: The Basis and Benefits of Low Class I Major Histocompatibility Complex Expression. Current Topics in Microbiology and Immunology, 1998, 232, 115-134.	1.1	18
44	Neuron-specific expression of a hamster prion protein minigene in transgenic mice induces susceptibility to hamster scrapie agent. Neuron, 1995, 15, 1183-1191.	8.1	149
45	An Essential Role for Type 1 Interferon-Î ³ in Terminating Persistent Viral Infection. Virology, 1995, 212, 244-250.	2.4	143