
Raphael Franzini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/848200/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanisms and Substituent Effects of Metal-Free Bioorthogonal Reactions. Chemical Reviews, 2021, 121, 6850-6914.	23.0	62
2	lsonitrile-responsive and bioorthogonally removable tetrazine protecting groups. Chemical Science, 2020, 11, 169-179.	3.7	41
3	A Stable Precursor for Bioorthogonally Removable 3-Isocyanopropyloxycarbonyl (ICPrc) Protecting Groups. Synlett, 2020, 31, 1701-1706.	1.0	1
4	Integrating DNA-encoded chemical libraries with virtual combinatorial library screening: Optimizing a PARP10 inhibitor. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127464.	1.0	13
5	The Unique Bioorthogonal Chemistry of Isonitriles. Synlett, 2020, 31, 938-944.	1.0	18
6	Rücktitelbild: Stable, Reactive, and Orthogonal Tetrazines: Dispersion Forces Promote the Cycloaddition with Isonitriles (Angew. Chem. 27/2019). Angewandte Chemie, 2019, 131, 9390-9390.	1.6	0
7	Tuning Isonitrile/Tetrazine Chemistry for Accelerated Deprotection and Formation of Stable Conjugates. Journal of Organic Chemistry, 2019, 84, 15520-15529.	1.7	22
8	Dissociative Bioorthogonal Reactions. ChemBioChem, 2019, 20, 1615-1627.	1.3	61
9	Stable, Reactive, and Orthogonal Tetrazines: Dispersion Forces Promote the Cycloaddition with Isonitriles. Angewandte Chemie, 2019, 131, 9141-9146.	1.6	12
10	Stable, Reactive, and Orthogonal Tetrazines: Dispersion Forces Promote the Cycloaddition with Isonitriles. Angewandte Chemie - International Edition, 2019, 58, 9043-9048.	7.2	67
11	A Focused DNA-Encoded Chemical Library for the Discovery of Inhibitors of NAD ⁺ -Dependent Enzymes. Journal of the American Chemical Society, 2019, 141, 5169-5181.	6.6	84
12	A DNAâ€Encoded Library of Chemical Compounds Based on Common Scaffolding Structures Reveals the Impact of Ligand Geometry on Protein Recognition. ChemMedChem, 2018, 13, 1303-1307.	1.6	37
13	Bioorthogonal Removal of 3-Isocyanopropyl Groups Enables the Controlled Release of Fluorophores and Drugs in Vivo. Journal of the American Chemical Society, 2018, 140, 8410-8414.	6.6	103
14	Stability of Oligonucleotide–Small Molecule Conjugates to DNA-Deprotection Conditions. Bioconjugate Chemistry, 2017, 28, 1076-1083.	1.8	11
15	Rapid and efficient tetrazine-induced drug release from highly stable benzonorbornadiene derivatives. Chemical Communications, 2017, 53, 6271-6274.	2.2	55
16	Achievements, Challenges, and Opportunities in DNAâ€Encoded Library Research: An Academic Point of View. ChemBioChem, 2017, 18, 829-836.	1.3	76
17	Dissociative reactions of benzonorbornadienes with tetrazines: scope of leaving groups and mechanistic insights. Organic and Biomolecular Chemistry, 2017, 15, 9855-9865.	1.5	28
18	Automated screening for small organic ligands using DNA-encoded chemical libraries. Nature Protocols, 2016, 11, 764-780.	5.5	94

RAPHAEL FRANZINI

#	Article	lF	CITATIONS
19	Chemical Space of DNA-Encoded Libraries. Journal of Medicinal Chemistry, 2016, 59, 6629-6644.	2.9	219
20	Identification of Structure–Activity Relationships from Screening a Structurally Compact DNAâ€Encoded Chemical Library. Angewandte Chemie - International Edition, 2015, 54, 3927-3931.	7.2	86
21	In Vitro Fluorogenic Realâ€Time Assay of the Repair of Oxidative DNA Damage. ChemBioChem, 2015, 16, 1637-1646.	1.3	26
22	Interrogating target-specificity by parallel screening of a DNA-encoded chemical library against closely related proteins. Chemical Communications, 2015, 51, 8014-8016.	2.2	32
23	Tankyrase 1 Inhibitors with Drug-like Properties Identified by Screening a DNA-Encoded Chemical Library. Journal of Medicinal Chemistry, 2015, 58, 5143-5149.	2.9	60
24	Dual-display of small molecules enables the discovery of ligand pairs and facilitates affinity maturation. Nature Chemistry, 2015, 7, 241-249.	6.6	181
25	"Cap-and-Catch―Purification for Enhancing the Quality of Libraries of DNA Conjugates. ACS Combinatorial Science, 2015, 17, 393-398.	3.8	25
26	DNA-Encoded Chemical Libraries: Advancing beyond Conventional Small-Molecule Libraries. Accounts of Chemical Research, 2014, 47, 1247-1255.	7.6	203
27	Systematic Evaluation and Optimization of Modification Reactions of Oligonucleotides with Amines and Carboxylic Acids for the Synthesis of DNA-Encoded Chemical Libraries. Bioconjugate Chemistry, 2014, 25, 1453-1461.	1.8	56
28	Patternâ€Based Detection of Toxic Metals in Surface Water with DNA Polyfluorophores. Angewandte Chemie - International Edition, 2014, 53, 5361-5365.	7.2	68
29	Improved Templated Fluorogenic Probes Enhance the Analysis of Closely Related Pathogenic Bacteria by Microscopy and Flow Cytometry. Bioconjugate Chemistry, 2011, 22, 1869-1877.	1.8	41
30	Two Successive Reactions on a DNA Template: A Strategy for Improving Background Fluorescence and Specificity in Nucleic Acid Detection. Chemistry - A European Journal, 2011, 17, 2168-2175.	1.7	44
31	Templated Chemistry for Sequenceâ€Specific Fluorogenic Detection of Duplex DNA. ChemBioChem, 2010, 11, 2132-2137.	1.3	27
32	Efficient Nucleic Acid Detection by Templated Reductive Quencher Release. Journal of the American Chemical Society, 2009, 131, 16021-16023.	6.6	145
33	7â€Azidomethoxy oumarins as Profluorophores for Templated Nucleic Acid Detection. ChemBioChem, 2008, 9, 2981-2988.	1.3	76
34	Organometallic Activation of a Fluorogen for Templated Nucleic Acid Detection. Organic Letters, 2008, 10, 2935-2938.	2.4	47