
Antonio de Vicente

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8481943/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Iturin and Fengycin Families of Lipopeptides Are Key Factors in Antagonism of Bacillus subtilis Toward Podosphaera fusca. Molecular Plant-Microbe Interactions, 2007, 20, 430-440.	2.6	553
2	Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology, 2011, 22, 187-193.	6.6	477
3	Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. Journal of Applied Microbiology, 2007, 103, 1950-1959.	3.1	240
4	The powdery mildew fungus <i>Podosphaera fusca</i> (synonym <i>Podosphaera xanthii</i>), a constant threat to cucurbits. Molecular Plant Pathology, 2009, 10, 153-160.	4.2	178
5	Surfactin triggers biofilm formation of <i><scp>B</scp>acillus subtilis</i> in melon phylloplane and contributes to the biocontrol activity. Environmental Microbiology, 2014, 16, 2196-2211.	3.8	176
6	The antagonistic strain <i><scp>B</scp>acillus subtilis</i> â€ <scp>UMAF</scp> 6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate―and salicylic acidâ€dependent defence responses. Microbial Biotechnology, 2013, 6, 264-274.	4.2	174
7	Pseudomonas syringae Diseases of Fruit Trees: Progress Toward Understanding and Control. Plant Disease, 2007, 91, 4-17.	1.4	154
8	Screening for candidate bacterial biocontrol agents against soilborne fungal plant pathogens. Plant and Soil, 2011, 340, 505-520.	3.7	143
9	The Iturin-like Lipopeptides Are Essential Components in the Biological Control Arsenal of <i>Bacillus subtilis</i> Against Bacterial Diseases of Cucurbits. Molecular Plant-Microbe Interactions, 2011, 24, 1540-1552.	2.6	132
10	Enhancing Soil Quality and Plant Health Through Suppressive Organic Amendments. Diversity, 2012, 4, 475-491.	1.7	128
11	Mechanisms of resistance to Qol fungicides in phytopathogenic fungi. International Microbiology, 2008, 11, 1-9.	2.4	125
12	Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. European Journal of Plant Pathology, 2012, 132, 609-619.	1.7	113
13	Effect of lipopeptides of antagonistic strains ofBacillus subtilison the morphology and ultrastructure of the cucurbit fungal pathogenPodosphaera fusca. Journal of Applied Microbiology, 2007, 103, 969-976.	3.1	110
14	Isolation and evaluation of antagonistic bacteria towards the cucurbit powdery mildew fungus Podosphaera fusca. Applied Microbiology and Biotechnology, 2004, 64, 263-269.	3.6	109
15	Accumulation of glutamine synthetase during early development of maritime pine (Pinus pinaster) seedlings. Planta, 1991, 185, 372-378.	3.2	103
16	The extracellular matrix protects Bacillus subtilis colonies from Pseudomonas invasion and modulates plant co-colonization. Nature Communications, 2019, 10, 1919.	12.8	102
17	Resistance to the SDHI Fungicides Boscalid, Fluopyram, Fluxapyroxad, and Penthiopyrad in <i>Botrytis cinerea</i> from Commercial Strawberry Fields in Spain. Plant Disease, 2017, 101, 1306-1313.	1.4	88
18	Copper Resistance in Pseudomonas syringae Strains Isolated from Mango Is Encoded Mainly by Plasmids. Phytopathology, 2002, 92, 909-916.	2.2	83

#	Article	IF	CITATIONS
19	Two similar enhanced rootâ€colonizing <i>Pseudomonas</i> strains differ largely in their colonization strategies of avocado roots and <i>Rosellinia necatrix</i> hyphae. Environmental Microbiology, 2008, 10, 3295-3304.	3.8	83
20	Evaluation of biological control agents for managing cucurbit powdery mildew on greenhouseâ€grown melon. Plant Pathology, 2007, 56, 976-986.	2.4	81
21	GFP sheds light on the infection process of avocado roots by Rosellinia necatrix. Fungal Genetics and Biology, 2009, 46, 137-145.	2.1	80
22	Coliphages as an indicator of faecal pollution in water. Its relationship with indicator and pathogenic microorganisms. Water Research, 1987, 21, 1473-1480.	11.3	79
23	Up-Regulation and Localization of Asparagine Synthetase in Tomato Leaves Infected by the Bacterial Pathogen Pseudomonas syringae. Plant and Cell Physiology, 2004, 45, 770-780.	3.1	77
24	Fungicide Resistance in Powdery Mildew Fungi. Microorganisms, 2020, 8, 1431.	3.6	74
25	Bacterial Apical Necrosis of Mango in Southern Spain: A Disease Caused by Pseudomonas syringae pv. syringae. Phytopathology, 1998, 88, 614-620.	2.2	71
26	Occurrence and distribution of resistance to QoI fungicides in populations of Podosphaera fusca in south central Spain. European Journal of Plant Pathology, 2006, 115, 215-222.	1.7	70
27	Organic amendments and land management affect bacterial community composition, diversity and biomass in avocado crop soils. Plant and Soil, 2012, 357, 215-226.	3.7	68
28	A genomic region involved in the formation of adhesin fibers in Bacillus cereus biofilms. Frontiers in Microbiology, 2014, 5, 745.	3.5	67
29	Cytosolic localization in tomato mesophyll cells of a novel glutamine synthetase induced in response to bacterial infection or phosphinothricin treatment. Planta, 1998, 206, 426-434.	3.2	65
30	Dual functionality of the amyloid protein TasA in Bacillus physiology and fitness on the phylloplane. Nature Communications, 2020, 11, 1859.	12.8	59
31	Isolation and selection of plant growth-promoting rhizobacteria as inducers of systemic resistance in melon. Plant and Soil, 2012, 358, 201-212.	3.7	58
32	Occurrence of races and pathotypes of cucurbit powdery mildew in southeastern Spain. Phytoparasitica, 2002, 30, 459-466.	1.2	56
33	The <i>dar</i> Genes of <i>Pseudomonas chlororaphis</i> PCL1606 Are Crucial for Biocontrol Activity via Production of the Antifungal Compound 2-Hexyl, 5-Propyl Resorcinol. Molecular Plant-Microbe Interactions, 2013, 26, 554-565.	2.6	56
34	Fitness Features Involved in the Biocontrol Interaction of Pseudomonas chlororaphis With Host Plants: The Case Study of PcPCL1606. Frontiers in Microbiology, 2019, 10, 719.	3.5	55
35	Analysis of β-tubulin-carbendazim interaction reveals that binding site for MBC fungicides does not include residues involved in fungicide resistance. Scientific Reports, 2018, 8, 7161.	3.3	51
36	Effect of mycoparasitic fungi on the development of Sphaerotheca fusca in melon leaves. Mycological Research, 2003, 107, 64-71.	2.5	50

#	Article	IF	CITATIONS
37	Role of 2-hexyl, 5-propyl resorcinol production by <i>Pseudomonas chlororaphis</i> PCL1606 in the multitrophic interactions in the avocado rhizosphere during the biocontrol process. FEMS Microbiology Ecology, 2014, 89, 20-31.	2.7	50
38	Comparative Genomic Analysis of <i>Pseudomonas chlororaphis</i> PCL1606 Reveals New Insight into Antifungal Compounds Involved in Biocontrol. Molecular Plant-Microbe Interactions, 2015, 28, 249-260.	2.6	50
39	Mangotoxin: a novel antimetabolite toxin produced by Pseudomonas syringae inhibiting ornithine/arginine biosynthesis. Physiological and Molecular Plant Pathology, 2003, 63, 117-127.	2.5	49
40	Field resistance to Qol fungicides in <i>Podosphaera fusca</i> is not supported by typical mutations in the mitochondrial cytochrome <i>b</i> gene. Pest Management Science, 2008, 64, 694-702.	3.4	49
41	Comparative histochemical analyses of oxidative burst and cell wall reinforcement in compatible and incompatible melon–powdery mildew (Podosphaera fusca) interactions. Journal of Plant Physiology, 2008, 165, 1895-1905.	3.5	49
42	Microbial Profiling of a Suppressiveness-Induced Agricultural Soil Amended with Composted Almond Shells. Frontiers in Microbiology, 2016, 7, 4.	3.5	48
43	Transformation of the cucurbit powdery mildew pathogen <i>Podosphaera xanthii</i> by <i>Agrobacterium tumefaciens</i> . New Phytologist, 2017, 213, 1961-1973.	7.3	47
44	Differential Expression of Glutamine Synthetase Isoforms in Tomato Detached Leaflets Infected withPseudomonas syringaepv.tomato. Molecular Plant-Microbe Interactions, 1995, 8, 96.	2.6	47
45	Recruitment and Rearrangement of Three Different Genetic Determinants into a Conjugative Plasmid Increase Copper Resistance in Pseudomonas syringae. Applied and Environmental Microbiology, 2013, 79, 1028-1033.	3.1	46
46	The role of organic amendments to soil for crop protection: Induction of suppression of soilborne pathogens. Annals of Applied Biology, 2020, 176, 1-15.	2.5	46
47	Chemical and Metabolic Aspects of Antimetabolite Toxins Produced by Pseudomonas syringae Pathovars. Toxins, 2011, 3, 1089-1110.	3.4	45
48	Organic Amendments to Avocado Crops Induce Suppressiveness and Influence the Composition and Activity of Soil Microbial Communities. Applied and Environmental Microbiology, 2015, 81, 3405-3418.	3.1	43
49	Biocontrol bacteria selected by a direct plant protection strategy against avocado white root rot show antagonism as a prevalent trait. Journal of Applied Microbiology, 2010, 109, 65-78.	3.1	42
50	Molecular characterization of a cDNA clone encoding glutamine synthetase from a gymnosperm, Pinus sylvestris. Plant Molecular Biology, 1993, 22, 819-828.	3.9	41
51	A Nonribosomal Peptide Synthetase Gene (mgoA) of Pseudomonas syringae pv. syringae Is Involved in Mangotoxin Biosynthesis and Is Required for Full Virulence. Molecular Plant-Microbe Interactions, 2007, 20, 500-509.	2.6	40
52	Biological control of avocado white root rot with combined applications of Trichoderma spp. and rhizobacteria. European Journal of Plant Pathology, 2014, 138, 751-762.	1.7	40
53	Molecular architecture of bacterial amyloids in <i>Bacillus</i> biofilms. FASEB Journal, 2019, 33, 12146-12163.	0.5	40
54	Metabolic responses of avocado plants to stress induced by Rosellinia necatrix analysed by fluorescence and thermal imaging. European Journal of Plant Pathology, 2015, 142, 625-632.	1.7	37

#	Article	IF	CITATIONS
55	Effectors with chitinase activity (EWCAs), a family of conserved, secreted fungal chitinases that suppress chitin-triggered immunity. Plant Cell, 2021, 33, 1319-1340.	6.6	36
56	Long-term Preservation of Podosphaera fusca Using Silica Gel. Journal of Phytopathology, 2006, 154, 190-192.	1.0	35
57	The mbo Operon Is Specific and Essential for Biosynthesis of Mangotoxin in Pseudomonas syringae. PLoS ONE, 2012, 7, e36709.	2.5	35
58	Pseudomonas syringae pv. syringae Associated With Mango Trees, a Particular Pathogen Within the "Hodgepodge―of the Pseudomonas syringae Complex. Frontiers in Plant Science, 2019, 10, 570.	3.6	35
59	Transformation of undomesticated strains of Bacillus subtilis by protoplast electroporation. Journal of Microbiological Methods, 2006, 66, 556-559.	1.6	34
60	Biofilm formation displays intrinsic offensive and defensive features of Bacillus cereus. Npj Biofilms and Microbiomes, 2020, 6, 3.	6.4	34
61	Selection for biocontrol bacteria antagonistic toward Rosellinia necatrix by enrichment of competitive avocado root tip colonizers. Research in Microbiology, 2007, 158, 463-470.	2.1	33
62	More than words: the chemistry behind the interactions in the plant holobiont. Environmental Microbiology, 2020, 22, 4532-4544.	3.8	33
63	THE INHIBITION OF METHANOGENIC ACTIVITY FROM ANAEROBIC DOMESTIC SLUDGES AS A SIMPLE TOXICITY BIOASSAY. Water Research, 1998, 32, 1338-1342.	11.3	32
64	Heavy metal toxicity and genotoxicity in water and sewage determined by microbiological methods. Environmental Toxicology and Chemistry, 2000, 19, 1552-1558.	4.3	32
65	Development of Sphaerotheca fusca on susceptible, resistant, and temperature-sensitive resistant melon cultivars. Mycological Research, 2001, 105, 1216-1222.	2.5	32
66	Characterisation of the mgo operon in Pseudomonas syringae pv. syringae UMAF0158 that is required for mangotoxin production. BMC Microbiology, 2012, 12, 10.	3.3	32
67	Comparative Genomics Within the <i>Bacillus</i> Genus Reveal the Singularities of Two Robust <i>Bacillus amyloliquefaciens</i> Biocontrol Strains. Molecular Plant-Microbe Interactions, 2015, 28, 1102-1116.	2.6	31
68	Contribution of mangotoxin to the virulence and epiphytic fitness of Pseudomonas syringae pv. syringae. International Microbiology, 2009, 12, 87-95.	2.4	31
69	Sensitivities to DMI fungicides in populations of <i>Podosphaera fusca</i> in south central Spain. Pest Management Science, 2010, 66, 801-808.	3.4	30
70	A <i>Pseudomonas syringae</i> Diversity Survey Reveals a Differentiated Phylotype of the Pathovar <i>syringae</i> Associated with the Mango Host and Mangotoxin Production. Phytopathology, 2013, 103, 1115-1129.	2.2	30
71	Bacillus subtilis biofilm matrix components target seed oil bodies to promote growth and anti-fungal resistance in melon. Nature Microbiology, 2022, 7, 1001-1015.	13.3	30
72	Environmentally friendly treatment alternatives to Bordeaux mixture for controlling bacterial apical necrosis (BAN) of mango. Plant Pathology, 2012, 61, 665-676.	2.4	29

#	Article	IF	CITATIONS
73	The Mangotoxin Biosynthetic Operon (<i>mbo</i>) Is Specifically Distributed within Pseudomonas syringae Genomospecies 1 and Was Acquired Only Once during Evolution. Applied and Environmental Microbiology, 2013, 79, 756-767.	3.1	29
74	De novo Analysis of the Epiphytic Transcriptome of the Cucurbit Powdery Mildew Fungus Podosphaera xanthii and Identification of Candidate Secreted Effector Proteins. PLoS ONE, 2016, 11, e0163379.	2.5	29
75	Characterization of Resistance to Six Chemical Classes of Site-Specific Fungicides Registered for Gray Mold Control on Strawberry in Spain. Plant Disease, 2016, 100, 2234-2239.	1.4	29
76	The Functional Characterization of <i>Podosphaera xanthii</i> Candidate Effector Genes Reveals Novel Target Functions for Fungal Pathogenicity. Molecular Plant-Microbe Interactions, 2018, 31, 914-931.	2.6	29
77	Two genomic regions encoding exopolysaccharide production systems have complementary functions in B. cereus multicellularity and host interaction. Scientific Reports, 2020, 10, 1000.	3.3	28
78	Chemical interplay and complementary adaptative strategies toggle bacterial antagonism and co-existence. Cell Reports, 2021, 36, 109449.	6.4	28
79	Biological role of EPS from Pseudomonas syringae pv. syringae UMAF0158 extracellular matrix, focusing on a Psl-like polysaccharide. Npj Biofilms and Microbiomes, 2020, 6, 37.	6.4	27
80	First Report of Mango Malformation Disease Caused by <i>Fusarium mangiferae</i> in Spain. Plant Disease, 2012, 96, 286-286.	1.4	26
81	Cellulose production in <i>Pseudomonas syringae</i> pv. <i>syringae</i> : a compromise between epiphytic and pathogenic lifestyles. FEMS Microbiology Ecology, 2015, 91, fiv071.	2.7	25
82	Heteroplasmy for the Cytochrome <i>b</i> Gene in <i>Podosphaera xanthii</i> and its Role in Resistance to Qol Fungicides in Spain. Plant Disease, 2018, 102, 1599-1605.	1.4	25
83	Bioinformatics Analysis of the Complete Genome Sequence of the Mango Tree Pathogen Pseudomonas syringae pv. syringae UMAF0158 Reveals Traits Relevant to Virulence and Epiphytic Lifestyle. PLoS ONE, 2015, 10, e0136101.	2.5	25
84	Light-dependent changes of tomato glutamine synthetase in response to Pseudomonas syringae infection or phosphinothricin treatment. Physiologia Plantarum, 1998, 102, 377-384.	5.2	24
85	Evaluation of the effectiveness of biocontrol bacteria against avocado white root rot occurring under commercial greenhouse plant production conditions. Biological Control, 2013, 67, 94-100.	3.0	24
86	Mangotoxin production of Pseudomonas syringae pv. syringae is regulated by MgoA. BMC Microbiology, 2014, 14, 46.	3.3	24
87	Differential expression of β -1,3-glucanase in susceptible and resistant melon cultivars in response to infection by Sphaerotheca fusca. Physiological and Molecular Plant Pathology, 2002, 61, 257-265.	2.5	23
88	Field evaluation of treatments for the control of the bacterial apical necrosis of mango (Mangifera) Tj ETQq0 0 279-288.	0 rgBT /0v 1.7	erlock 10 Tf 5 23
89	Complete sequence and comparative genomic analysis of eight native Pseudomonas syringae plasmids belonging to the pPT23A family. BMC Genomics, 2017, 18, 365.	2.8	23
00	Beyond the Wall: Exopolysaccharides in the Biofilm Lifestyle of Pathogenic and Beneficial	9.6	99

Plant-Associated Pseudomonas. Microorganisms, 2021, 9, 445.

3.6 23

(

#	Article	IF	CITATIONS
91	Detection of White Root Rot in Avocado Trees by Remote Sensing. Plant Disease, 2019, 103, 1119-1125.	1.4	22
92	62-kb Plasmids Harboring rulAB Homologues Confer UV-tolerance and Epiphytic Fitness to Pseudomonas syringae pv. syringae Mango Isolates. Microbial Ecology, 2008, 56, 283-291.	2.8	21
93	Characterization of biocontrol bacterial strains isolated from a suppressiveness-induced soil after amendment with composted almond shells. Research in Microbiology, 2017, 168, 583-593.	2.1	21
94	A haustorialâ€expressed lytic polysaccharide monooxygenase from the cucurbit powdery mildew pathogen Podosphaera xanthii contributes to the suppression of chitinâ€ŧriggered immunity. Molecular Plant Pathology, 2021, 22, 580-601.	4.2	21
95	Multiple displacement amplification, a powerful tool for molecular genetic analysis of powdery mildew fungi. Current Genetics, 2007, 51, 209-219.	1.7	20
96	<i>Pantoea agglomerans</i> as a New Etiological Agent of a Bacterial Necrotic Disease of Mango Trees. Phytopathology, 2019, 109, 17-26.	2.2	20
97	Further Support of Conspecificity of Oak and Mango Powdery Mildew and First Report of <i>Erysiphe quercicola</i> and <i>Erysiphe alphitoides</i> on Mango in Mainland Europe. Plant Disease, 2017, 101, 1086-1093.	1.4	19
98	Impact of motility and chemotaxis features of the rhizobacterium Pseudomonas chlororaphis PCL1606 on its biocontrol of avocado white root rot. International Microbiology, 2017, 20, 95-104.	2.4	19
99	Monitoring Methyl Benzimidazole Carbamate-Resistant Isolates of the Cucurbit Powdery Mildew Pathogen, <i>Podosphaera xanthii</i> , Using Loop-Mediated Isothermal Amplification. Plant Disease, 2019, 103, 1515-1524.	1.4	17
100	Soil Application of a Formulated Biocontrol Rhizobacterium, Pseudomonas chlororaphis PCL1606, Induces Soil Suppressiveness by Impacting Specific Microbial Communities. Frontiers in Microbiology, 2020, 11, 1874.	3.5	17
101	Transient transformation of Podosphaera xanthii by electroporation of conidia. BMC Microbiology, 2015, 15, 20.	3.3	16
102	Genes Involved in the Production of Antimetabolite Toxins by Pseudomonas syringae Pathovars. Genes, 2011, 2, 640-660.	2.4	15
103	Beyond the expected: the structural and functional diversity of bacterial amyloids. Critical Reviews in Microbiology, 2018, 44, 653-666.	6.1	14
104	A Hybrid Genome Assembly Resource for <i>Podosphaera xanthii</i> , the Main Causal Agent of Powdery Mildew Disease in Cucurbits. Molecular Plant-Microbe Interactions, 2021, 34, 319-324.	2.6	14
105	Analysis of Genetic Diversity of <i>Fusarium tupiense,</i> the Main Causal Agent of Mango Malformation Disease in Southern Spain. Plant Disease, 2016, 100, 276-286.	1.4	13
106	Sporulation is dispensable for the vegetableâ€associated life cycle of the human pathogen <i>BacillusÂcereus</i> . Microbial Biotechnology, 2021, 14, 1550-1565.	4.2	13
107	A method for estimation of population densities of ice nucleating active <i>Pseudomonas syringae</i> in buds and leaves of mango. Journal of Applied Bacteriology, 1995, 79, 341-346.	1.1	12
108	Transformation by growth onto agroâ€infiltrated tissues (TGAT), a simple and efficient alternative for transient transformation of the cucurbit powdery mildew pathogen <i>Podosphaera xanthii</i> . Molecular Plant Pathology, 2018, 19, 2502-2515.	4.2	11

#	Article	IF	CITATIONS
109	Multifunctional Amyloids in the Biology of Gram-Positive Bacteria. Microorganisms, 2020, 8, 2020.	3.6	11
110	First Report of Bacterial Leaf Spot (Pseudomonas syringae pv. coriandricola) of Coriander in Spain. Journal of Phytopathology, 2005, 153, 181-184.	1.0	10
111	Sclerotization as a long-term preservation method for Rosellinia necatrix strains. Mycoscience, 2012, 53, 460-465.	0.8	10
112	Bacterial extracellular matrix as a natural source of biotechnologically multivalent materials. Computational and Structural Biotechnology Journal, 2021, 19, 2796-2805.	4.1	10
113	Role of extracellular matrix components in the formation of biofilms and their contribution to the biocontrol activity of <i>Pseudomonas chlororaphis</i> <scp>PCL1606</scp> . Environmental Microbiology, 2021, 23, 2086-2101.	3.8	9
114	Effects of nickel and lead and a support material on the methanogenesis from sewage sludge. Letters in Applied Microbiology, 1996, 23, 339-342.	2.2	8
115	darR and darS are regulatory genes that modulate 2-hexyl, 5-propyl resorcinol transcription in Pseudomonas chlororaphis PCL1606. Microbiology (United Kingdom), 2014, 160, 2670-2680.	1.8	7
116	Biological Control of Phytopathogenic Fungi by Aerobic Endospore-Formers. Soil Biology, 2011, , 157-180.	0.8	6
117	Draft Genome Sequence of the Rhizobacterium Pseudomonas chlororaphis PCL1601, Displaying Biocontrol against Soilborne Phytopathogens. Genome Announcements, 2017, 5, .	0.8	6
118	A Large Tn <i>7</i> -like Transposon Confers Hyperresistance to Copper in <i>Pseudomonas syringae</i> pv. syringae. Applied and Environmental Microbiology, 2021, 87, .	3.1	6
119	First Occurrence of Cucurbit Powdery Mildew Caused by Race 3-5 of <i>Podosphaera fusca</i> in Spain. Plant Disease, 2009, 93, 1073-1073.	1.4	6
120	Response of the Biocontrol Agent Pseudomonas pseudoalcaligenes AVO110 to Rosellinia necatrix Exudate. Applied and Environmental Microbiology, 2019, 85, .	3.1	5
121	Resistance to the SDHI Fungicides Boscalid and Fluopyram in Podosphaera xanthii Populations from Commercial Cucurbit Fields in Spain. Journal of Fungi (Basel, Switzerland), 2021, 7, 733.	3.5	5
122	The Rhizobacterium Pseudomonas alcaligenes AVO110 Induces the Expression of Biofilm-Related Genes in Response to Rosellinia necatrix Exudates. Microorganisms, 2021, 9, 1388.	3.6	4
123	Pseudomonas syringae pv. syringae as Microorganism Involved in Apical Necrosis of Mango: Characterization of Some Virulence Factors. Developments in Plant Pathology, 1997, , 82-87.	0.1	4
124	First Report of Fludioxonil Resistance in <i>Botrytis cinerea</i> , the Causal Agent of Gray Mold, From Strawberry Fields in Spain. Plant Disease, 2016, 100, 1779-1779.	1.4	4
125	A Noninvasive Method for Time-Lapse Imaging of Microbial Interactions and Colony Dynamics. Microbiology Spectrum, 2022, 10, .	3.0	4
126	The race for antimicrobials in the multidrug resistance era. Microbial Biotechnology, 2018, 11, 976-978.	4.2	3

#	Article	IF	CITATIONS
127	The Haustorium of Phytopathogenic Fungi: A Short Overview of a Specialized Cell of Obligate Biotrophic Plant Parasites. Progress in Botany Fortschritte Der Botanik, 2020, , 337-355.	0.3	3
128	Powdery Mildew of Dill (Anethum graveolens): A New Disease Caused by Erysiphe heraclei Detected in Spain. Plant Disease, 2004, 88, 905-905.	1.4	3
129	First Report of Fenpyrazamine Resistance in <i>Botrytis cinerea</i> from Strawberry Fields in Spain. Plant Health Progress, 2018, 19, 45-45.	1.4	2
130	First Report of <i>Pantoea ananatis</i> Causing Necrotic Symptoms in Mango Trees in the Canary Islands, Spain. Plant Disease, 2019, 103, 1017.	1.4	2
131	Insecticidal features displayed by the beneficial rhizobacterium Pseudomonas chlororaphis PCL1606. International Microbiology, 2022, 25, 679-689.	2.4	2
132	Characterization of Fusarium mangiferae isolates from mango malformation disease in Southern Spain. European Journal of Plant Pathology, 2014, 139, 253.	1.7	1
133	First Report of Powdery Mildew Elicited by <i>Erysiphe diffusa</i> on Papaya (<i>Carica papaya</i>) in Spain. Plant Disease, 2019, 103, 2477-2477.	1.4	1
134	Understanding Bacterial Physiology for Improving Full Fitness. Progress in Biological Control, 2020, , 47-60.	0.5	1
135	First Report of Powdery Mildew Elicited by Podosphaera fusca (Synonym Podosphaera xanthii) on Euryops pectinatus in Spain. Plant Disease, 2008, 92, 835-835.	1.4	0
136	First Report of Powdery Mildew on Peppermint (Mentha piperita) Caused by Golovinomyces biocellatus in Spain. Plant Disease, 2019, 103, 1427-1427.	1.4	0