Pramod A Pullarkat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8481827/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Master Relation Defines the Nonlinear Viscoelasticity of Single Fibroblasts. Biophysical Journal, 2006, 90, 3796-3805.	0.5	200
2	Mechanical Properties of Axons. Physical Review Letters, 2007, 99, 018301.	7.8	126
3	Role of Actin Filaments in Correlating Nuclear Shape and Cell Spreading. PLoS ONE, 2014, 9, e107895.	2.5	72
4	Osmotically Driven Shape Transformations in Axons. Physical Review Letters, 2006, 96, 048104.	7.8	70
5	Shear rheology of a cell monolayer. New Journal of Physics, 2007, 9, 419-419.	2.9	62
6	The Roles of Microtubules and Membrane Tension in Axonal Beading, Retraction, and Atrophy. Biophysical Journal, 2019, 117, 880-891.	0.5	56
7	An Osmoregulatory Basis for Shape Oscillations in Regenerating Hydra. Biophysical Journal, 2008, 95, 978-985.	0.5	54
8	Mechanogenetic Coupling of Hydra Symmetry Breaking and Driven Turing Instability Model. Biophysical Journal, 2009, 96, 1649-1660.	0.5	41
9	Dynamics of Membrane Tethers Reveal Novel Aspects of Cytoskeleton-Membrane Interactions in Axons. Biophysical Journal, 2015, 108, 489-497.	0.5	39
10	The axonal actin-spectrin lattice acts as a tension buffering shock absorber. ELife, 2020, 9, .	6.0	37
11	Cytoskeletal Mechanisms of Axonal Contractility. Biophysical Journal, 2018, 115, 713-724.	0.5	33
12	Self-Propulsion of Nematic Drops: Novel Phase Separation Dynamics in Impurity-Doped Nematogens. Physical Review Letters, 2006, 97, 115701.	7.8	32
13	Biophysics of Cell-Substrate Interactions Under Shear. Frontiers in Cell and Developmental Biology, 2019, 7, 251.	3.7	27
14	The Role of the Cytoskeleton in Volume Regulation and Beading Transitions in PC12 Neurites. Biophysical Journal, 2010, 99, 3571-3579.	0.5	24
15	Drag Force as a Tool to Test the Active Mechanical Response of PC12 Neurites. Biophysical Journal, 2010, 98, 515-523.	O.5	23
16	Modeling cell-substrate de-adhesion dynamics under fluid shear. Physical Biology, 2018, 15, 046006.	1.8	12
17	Optical fiber-based force transducer for microscale samples. Review of Scientific Instruments, 2013, 84, 105107.	1.3	6
18	The role of mechanics in axonal stability and development. Seminars in Cell and Developmental Biology, 2023, 140, 22-34.	5.0	3

PRAMOD A PULLARKAT

#	Article	IF	CITATIONS
19	Oscillatory extensional rheology of microscale fluid filaments. Rheologica Acta, 2017, 56, 113-122.	2.4	2
20	Strain softening and stiffening responses of spider silk fibers probed using a Micro-Extension Rheometer. Soft Matter, 2020, 16, 487-493.	2.7	1
21	Investigation of soft and living matter using a micro-extensional rheometer. Journal of Physics Condensed Matter, 2021, 33, 084003.	1.8	1
22	Cell Morphology and Substrate Ligand Density Determines Adhesion Strength and Remodelling Under Dynamic Shear. Biophysical Journal, 2020, 118, 604a.	0.5	0