
Gibaek Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8481576/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Superior durability and stability of Pt electrocatalyst on N-doped graphene-TiO2 hybrid material for oxygen reduction reaction and polymer electrolyte membrane fuel cells. Applied Catalysis B: Environmental, 2020, 268, 118414.	10.8	85
2	SiO ₂ /TiO ₂ Composite Film for High Capacity and Excellent Cycling Stability in Lithiumâ€ion Battery Anodes. Advanced Functional Materials, 2017, 27, 1703538.	7.8	82
3	Electrochemical properties of an aluminum anode in an ionic liquid electrolyte for rechargeable aluminum-ion batteries. Physical Chemistry Chemical Physics, 2017, 19, 8653-8656.	1.3	74
4	Designing a smart heterojunction coupling of cobalt-iron layered double hydroxide on nickel selenide nanosheets for highly efficient overall water splitting kinetics. Applied Catalysis B: Environmental, 2022, 308, 121221.	10.8	69
5	Superior fast-charging capability of graphite anode via facile surface treatment for lithium-ion batteries. Microporous and Mesoporous Materials, 2020, 305, 110325.	2.2	59
6	Simultaneous co-doping of RuO2 and IrO2 into anodic TiO2 nanotubes: A binary catalyst for electrochemical water splitting. International Journal of Hydrogen Energy, 2017, 42, 6657-6664.	3.8	48
7	Highly Ordered TiO ₂ Microcones with High Rate Performance for Enhanced Lithium-Ion Storage. ACS Applied Materials & Interfaces, 2016, 8, 14558-14563.	4.0	39
8	Tunable Synthesis of N,C-Codoped Ti ³⁺ -Enriched Titanium Oxide Support for Highly Durable PEMFC Cathode. ACS Catalysis, 2020, 10, 12080-12090.	5.5	39
9	Mo-incorporated three-dimensional hierarchical ternary nickel-cobalt-molybdenum layer double hydroxide for high-efficiency water splitting. International Journal of Hydrogen Energy, 2021, 46, 22463-22477.	3.8	39
10	Elucidating the structural redox behaviors of nanostructured expanded graphite anodes toward fast-charging and high-performance lithium-ion batteries. Carbon, 2021, 175, 187-201.	5.4	37
11	Hierarchically designed CoMo marigold flower-like 3D nano-heterostructure as an efficient electrocatalyst for oxygen and hydrogen evolution reactions. Applied Surface Science, 2021, 546, 149072.	3.1	35
12	High-Defect-Density Graphite for Superior-Performance Aluminum-Ion Batteries with Ultra-Fast Charging and Stable Long Life. Nano-Micro Letters, 2021, 13, 171.	14.4	35
13	Hypostatic instability of aluminum anode in acidic ionic liquid for aluminum-ion battery. Nanotechnology, 2018, 29, 36LT01.	1.3	31
14	A perylene-based aromatic polyimide with multiple carbonyls enabling high-capacity and stable organic lithium and sodium ion batteries. Sustainable Energy and Fuels, 2021, 5, 175-187.	2.5	31
15	In situ polymerized solid electrolytes for superior safety and stability of flexible solid-state Al-ion batteries. Energy Storage Materials, 2021, 40, 229-238.	9.5	30
16	High-performance bipolar plate of thin IrO x -coated TiO 2 nanotubes in vanadium redox flow batteries. Catalysis Today, 2017, 295, 132-139.	2.2	26
17	Large π-Conjugated Condensed Perylene-Based Aromatic Polyimide as Organic Cathode for Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 6511-6524.	2.5	26
18	One-dimensional hierarchical nanostructures of NiCo ₂ O ₄ , NiCo ₂ S ₄ and NiCo ₂ Se ₄ with superior electrocatalytic activities toward efficient oxygen evolution reaction. Nanotechnology, 2020, 31, 295405.	1.3	22

GIBAEK LEE

#	Article	IF	CITATIONS
19	Stability of Metallic Current Collectors in Acidic Ionic Liquid for Rechargeable Aluminumâ€lon Batteries. ChemElectroChem, 2018, 5, 3348-3352.	1.7	21
20	Fastâ€Charging and High Volumetric Capacity Anode Based on Co ₃ O ₄ /CuO@TiO ₂ Composites for Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2018, 24, 19045-19052.	1.7	20
21	Binder-free SnO ₂ –TiO ₂ composite anode with high durability for lithium-ion batteries. RSC Advances, 2019, 9, 6589-6595.	1.7	20
22	Nitrogen-doped TiO ₂ (B) nanobelts enabling enhancement of electronic conductivity and efficiency of lithium-ion storage. Nanotechnology, 2020, 31, 415401.	1.3	20
23	RuO ₂ -Doped Anodic TiO ₂ Nanotubes for Water Oxidation: Single-Step Anodization vs Potential Shock Method. Journal of the Electrochemical Society, 2017, 164, H104-H111.	1.3	16
24	Boost charging lithium-ion battery using expanded graphite anode with enhanced performance. Materials Letters, 2021, 299, 130077.	1.3	16
25	<i>In situ</i> durability of various carbon supports against carbon corrosion during fuel starvation in a PEM fuel cell cathode. Nanotechnology, 2019, 30, 085402.	1.3	14
26	RGO-Coated TiO ₂ Microcones for High-Rate Lithium-Ion Batteries. ACS Omega, 2018, 3, 10205-10210.	1.6	10
27	Electrochemical characteristics of plasma-etched black silicon as anodes for Li-ion batteries. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, 061202.	0.9	8
28	Key Anodization Factors for Determining the Formation of TiO ₂ Microcones vs Nanotubes. Journal of the Electrochemical Society, 2017, 164, D640-D644.	1.3	7
29	Electrochemically Surfaceâ€modified Aluminum Electrode Enabling High Performance and Ultraâ€long Cycling Life Alâ€ion Batteries. Electroanalysis, 2022, 34, 1308-1317.	1.5	7
30	Microstructural characterization of Li insertion in individual silicon nanowires. Applied Physics A: Materials Science and Processing, 2014, 117, 973-979.	1.1	6
31	CMOS-compatible metal-stabilized nanostructured Si as anodes for lithium-ion microbatteries. Nanoscale Research Letters, 2014, 9, 613.	3.1	6
32	Nb-doped TiO ₂ support with enhanced durability as a cathode for polymer electrolyte membrane fuel cells. Nanotechnology, 2020, 31, 03LT01.	1.3	5
33	Fast charging with high capacity for aluminum rechargeable batteries using organic additive in an ionic liquid electrolyte. Physical Chemistry Chemical Physics, 2020, 22, 27525-27528.	1.3	5
34	Stability of Metallic Current Collectors in Acidic Ionic Liquid for Rechargeable Aluminumâ€ I on Batteries. ChemElectroChem, 2018, 5, 3334-3334.	1.7	0
35	Batteries and charge storage devices based on π-conjugated polymeric materials. , 2022, , 1-53.		0