Paola Gamba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8481243/publications.pdf

Version: 2024-02-01

31 papers	1,807	23	31
	citations	h-index	g-index
31	31	31	2508
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Controversial Role of 24-S-Hydroxycholesterol in Alzheimer's Disease. Antioxidants, 2021, 10, 740.	2.2	33
2	Cholesterol Dysmetabolism in Alzheimer's Disease: A Starring Role for Astrocytes?. Antioxidants, 2021, 10, 1890.	2.2	20
3	The role of oxysterols in vascular ageing. Journal of Physiology, 2016, 594, 2095-2113.	1.3	67
4	Changes in brain oxysterols at different stages of Alzheimer's disease: Their involvement in neuroinflammation. Redox Biology, 2016, 10, 24-33.	3.9	192
5	Nrf2 antioxidant defense is involved in survival signaling elicited by 27-hydroxycholesterol in human promonocytic cells. Free Radical Biology and Medicine, 2016, 91, 93-104.	1.3	22
6	Oxysterols and mechanisms of survival signaling. Molecular Aspects of Medicine, 2016, 49, 8-22.	2.7	32
7	Relation between TLR4/NFâ€ÎºB signaling pathway activation by 27â€hydroxycholesterol and 4â€hydroxynonenal, and atherosclerotic plaque instability. Aging Cell, 2015, 14, 569-581.	3.0	110
8	Oxidized cholesterol as the driving force behind the development of Alzheimer's disease. Frontiers in Aging Neuroscience, 2015, 7, 119.	1.7	135
9	The role of p38 MAPK in the induction of intestinal inflammation by dietary oxysterols: modulation by wine phenolics. Food and Function, 2015, 6, 1218-1228.	2.1	43
10	Improved Anti-Tumoral Therapeutic Efficacy of 4-Hydroxynonenal Incorporated in Novel Lipid Nanocapsules in 2D and 3D Models. Journal of Biomedical Nanotechnology, 2015, 11, 2169-2185.	0.5	8
11	Survival signaling elicited by 27-hydroxycholesterol through the combined modulation of cellular redox state and ERK/Akt phosphorylation. Free Radical Biology and Medicine, 2014, 77, 376-385.	1.3	38
12	Upâ€regulation of βâ€amyloidogenesis in neuronâ€like human cells by both 24†and 27â€hydroxycholesterol: protective effect of <i>N</i> à€acetylâ€cysteine. Aging Cell, 2014, 13, 561-572.	3.0	52
13	Wine consumption and intestinal redox homeostasis. Redox Biology, 2014, 2, 795-802.	3.9	68
14	Loading into Nanoparticles Improves Quercetin's Efficacy in Preventing Neuroinflammation Induced by Oxysterols. PLoS ONE, 2014, 9, e96795.	1.1	80
15	Metalloproteinases and Metalloproteinase Inhibitors in Age-Related Diseases. Current Pharmaceutical Design, 2014, 20, 2993-3018.	0.9	22
16	Evidence of cell damage induced by major components of a diet-compatible mixture of oxysterols in human colon cancer CaCo-2 cell line. Biochimie, 2013, 95, 632-640.	1.3	36
17	Phenolic compounds present in Sardinian wine extracts protect against the production of inflammatory cytokines induced by oxysterols in CaCo-2 human enterocyte-like cells. Biochemical Pharmacology, 2013, 86, 138-145.	2.0	37
18	Molecular Signaling Involved in Oxysterol-Induced \hat{I}^2 1-Integrin Over-Expression in Human Macrophages. International Journal of Molecular Sciences, 2012, 13, 14278-14293.	1.8	12

#	Article	IF	CITATIONS
19	Potentiation of amyloid- \hat{l}^2 peptide neurotoxicity in human dental-pulp neuron-like cells by the membrane lipid peroxidation product 4-hydroxynonenal. Free Radical Biology and Medicine, 2012, 53, 1708-1717.	1.3	15
20	Inflammation-related gene expression by lipid oxidation-derived products in the progression of atherosclerosis. Free Radical Biology and Medicine, 2012, 52, 19-34.	1.3	90
21	The link between altered cholesterol metabolism and Alzheimer's disease. Annals of the New York Academy of Sciences, 2012, 1259, 54-64.	1.8	108
22	Interaction between 24-hydroxycholesterol, oxidative stress, and amyloid-β in amplifying neuronal damage in Alzheimer's disease: three partners in crime. Aging Cell, 2011, 10, 403-417.	3.0	85
23	Plaque oxysterols induce unbalanced up-regulation of matrix metalloproteinase-9 in macrophagic cells through redox-sensitive signaling pathways: Implications regarding the vulnerability of atherosclerotic lesions. Free Radical Biology and Medicine, 2011, 51, 844-855.	1.3	44
24	Molecular signaling operated by a dietâ€compatible mixture of oxysterols in upâ€regulating CD36 receptor in CD68 positive cells. Molecular Nutrition and Food Research, 2010, 54, S31-41.	1.5	27
25	Design and Development of Nanovehicle-Based Delivery Systems for Preventive or Therapeutic Supplementation with Flavonoids. Current Medicinal Chemistry, 2010, 17, 74-95.	1.2	126
26	Cholesterol Oxidation Products and Disease: An Emerging Topic of Interest in Medicinal Chemistry. Current Medicinal Chemistry, 2009, 16, 685-705.	1.2	121
27	The coreâ€nldehyde 9â€oxononanoyl cholesterol increases the level of transformingÂgrowthÂfactorÂβ1â€specific receptors on promonocytic U937 cell membranes. Aging Cell, 2009, 8, 77-87.	3.0	8
28	Oxidation as a crucial reaction for cholesterol to induce tissue degeneration: CD36 overexpression in human promonocytic cells treated with a biologically relevant oxysterol mixture. Aging Cell, 2008, 7, 375-382.	3.0	32
29	Lipid peroxidation and inflammatory molecules as markers of coronary artery disease. Redox Report, 2007, 12, 81-85.	1.4	3
30	Early Involvement of ROS Overproduction in Apoptosis Induced by 7-Ketocholesterol. Antioxidants and Redox Signaling, 2006, 8, 375-380.	2.5	65
31	Oxysterol-induced up-regulation of MCP-1 expression and synthesis in macrophage cells. Free Radical Biology and Medicine, 2005, 39, 1152-1161.	1.3	76