David Sinton

List of Publications by Citations

Source: https://exaly.com/author-pdf/8480826/david-sinton-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66 16,277 229 121 h-index g-index citations papers 12.6 21,303 7.05 252 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
229	Enhanced electrocatalytic CO reduction via field-induced reagent concentration. <i>Nature</i> , 2016 , 537, 38	2-38 <u>.6</u>	997
228	CO electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. <i>Science</i> , 2018 , 360, 783-787	33.3	980
227	Microfluidic fuel cells: A review. <i>Journal of Power Sources</i> , 2009 , 186, 353-369	8.9	440
226	Dopant-induced electron localization drives CO reduction to C hydrocarbons. <i>Nature Chemistry</i> , 2018 , 10, 974-980	17.6	435
225	A new generation of sensors based on extraordinary optical transmission. <i>Accounts of Chemical Research</i> , 2008 , 41, 1049-57	24.3	423
224	CO electrolysis to multicarbon products at activities greater than 1 A cm. <i>Science</i> , 2020 , 367, 661-666	33.3	403
223	Electrochemical CO Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design. <i>Advanced Materials</i> , 2019 , 31, e1807166	24	396
222	Steering post-CL coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. <i>Nature Catalysis</i> , 2018 , 1, 421-428	36.5	348
221	Turning the Page: Advancing Paper-Based Microfluidics for Broad Diagnostic Application. <i>Chemical Reviews</i> , 2017 , 117, 8447-8480	68.1	333
220	Molecular tuning of CO-to-ethylene conversion. <i>Nature</i> , 2020 , 577, 509-513	50.4	321
219	Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. <i>Nature Energy</i> , 2019 , 4, 107-114	62.3	264
218	A microfluidic fuel cell with flow-through porous electrodes. <i>Journal of the American Chemical Society</i> , 2008 , 130, 4000-6	16.4	255
217	Effect of compression on liquid water transport and microstructure of PEMFC gas diffusion layers. Journal of Power Sources, 2007 , 163, 784-792	8.9	245
216	On-chip surface-based detection with nanohole arrays. <i>Analytical Chemistry</i> , 2007 , 79, 4094-100	7.8	227
215	Optofluidics for energy applications. <i>Nature Photonics</i> , 2011 , 5, 583-590	33.9	223
214	Nanoholes as nanochannels: flow-through plasmonic sensing. <i>Analytical Chemistry</i> , 2009 , 81, 4308-11	7.8	223
213	Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems. <i>Lab on A Chip</i> , 2003 , 3, 141-9	7.2	221

(2014-2018)

212	Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. <i>Nature Catalysis</i> , 2018 , 1, 946-951	36.5	205	
211	Enhanced Nitrate-to-Ammonia Activity on Copper-Nickel Alloys via Tuning of Intermediate Adsorption. <i>Journal of the American Chemical Society</i> , 2020 , 142, 5702-5708	16.4	192	
210	Metal-Organic Frameworks Mediate Cu Coordination for Selective CO Electroreduction. <i>Journal of the American Chemical Society</i> , 2018 , 140, 11378-11386	16.4	188	
209	Binding Site Diversity Promotes CO Electroreduction to Ethanol. <i>Journal of the American Chemical Society</i> , 2019 , 141, 8584-8591	16.4	178	
208	Cooperative CO2-to-ethanol conversion via enriched intermediates at moleculeThetal catalyst interfaces. <i>Nature Catalysis</i> , 2020 , 3, 75-82	36.5	164	
207	Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO. <i>Nature Communications</i> , 2018 , 9, 3828	17.4	164	
206	Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. <i>Nature Energy</i> , 2020 , 5, 478-486	62.3	163	
205	Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. <i>Nature Catalysis</i> , 2020 , 3, 98-106	36.5	158	
204	Continuous Carbon Dioxide Electroreduction to Concentrated Multi-carbon Products Using a Membrane Electrode Assembly. <i>Joule</i> , 2019 , 3, 2777-2791	27.8	155	
203	Combined high alkalinity and pressurization enable efficient CO2 electroreduction to CO. <i>Energy and Environmental Science</i> , 2018 , 11, 2531-2539	35.4	147	
202	Photon management for augmented photosynthesis. <i>Nature Communications</i> , 2016 , 7, 12699	17.4	142	
201	Improved fuel utilization in microfluidic fuel cells: A computational study. <i>Journal of Power Sources</i> , 2005 , 143, 57-66	8.9	140	
200	High Rate, Selective, and Stable Electroreduction of CO2 to CO in Basic and Neutral Media. <i>ACS Energy Letters</i> , 2018 , 3, 2835-2840	20.1	136	
199	A Surface Reconstruction Route to High Productivity and Selectivity in CO Electroreduction toward C Hydrocarbons. <i>Advanced Materials</i> , 2018 , 30, e1804867	24	131	
198	Electroosmotic flow with Joule heating effects. Lab on A Chip, 2004, 4, 230-6	7.2	128	
197	High-Density Nanosharp Microstructures Enable Efficient CO Electroreduction. <i>Nano Letters</i> , 2016 , 16, 7224-7228	11.5	126	
196	2D Metal Oxyhalide-Derived Catalysts for Efficient CO Electroreduction. <i>Advanced Materials</i> , 2018 , 30, e1802858	24	123	
195	Pore-Scale Assessment of Nanoparticle-Stabilized CO2 Foam for Enhanced Oil Recovery. <i>Energy & Energy Fuels</i> , 2014 , 28, 6221-6227	4.1	116	

194	CO electrolysis to multicarbon products in strong acid. <i>Science</i> , 2021 , 372, 1074-1078	33.3	115
193	Attomolar protein detection using in-hole surface plasmon resonance. <i>Journal of the American Chemical Society</i> , 2009 , 131, 436-7	16.4	112
192	Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper. <i>Nature Catalysis</i> , 2019 , 2, 251-258	36.5	111
191	Energy: the microfluidic frontier. <i>Lab on A Chip</i> , 2014 , 14, 3127-34	7.2	109
190	Planar and three-dimensional microfluidic fuel cell architectures based on graphite rod electrodes. Journal of Power Sources, 2007 , 168, 379-390	8.9	107
189	Two-dimensional slither swimming of sperm within a micrometre of a surface. <i>Nature Communications</i> , 2015 , 6, 8703	17.4	103
188	Optofluidic concentration: plasmonic nanostructure as concentrator and sensor. <i>Nano Letters</i> , 2012 , 12, 1592-6	11.5	102
187	High-performance microfluidic vanadium redox fuel cell. <i>Electrochimica Acta</i> , 2007 , 52, 4942-4946	6.7	102
186	Magnetic Extraction of Microplastics from Environmental Samples. <i>Environmental Science and Technology Letters</i> , 2019 , 6, 68-72	11	100
185	Direct DNA Analysis with Paper-Based Ion Concentration Polarization. <i>Journal of the American Chemical Society</i> , 2015 , 137, 13913-9	16.4	100
184	Hydronium-Induced Switching between CO Electroreduction Pathways. <i>Journal of the American Chemical Society</i> , 2018 , 140, 3833-3837	16.4	100
183	Hydrogen Peroxide as an Oxidant for Microfluidic Fuel Cells. <i>Journal of the Electrochemical Society</i> , 2007 , 154, B1220	3.9	100
182	Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen. <i>Nature Communications</i> , 2019 , 10, 5814	17.4	95
181	Rapid selection of sperm with high DNA integrity. <i>Lab on A Chip</i> , 2014 , 14, 1142-50	7.2	94
180	Chip-off-the-old-rock: the study of reservoir-relevant geological processes with real-rock micromodels. <i>Lab on A Chip</i> , 2014 , 14, 4382-90	7.2	92
179	Deep Learning with Microfluidics for Biotechnology. <i>Trends in Biotechnology</i> , 2019 , 37, 310-324	15.1	92
178	Flow-through vs flow-over: analysis of transport and binding in nanohole array plasmonic biosensors. <i>Analytical Chemistry</i> , 2010 , 82, 10015-20	7.8	90
177	An alkaline microfluidic fuel cell based on formate and hypochlorite bleach. <i>Electrochimica Acta</i> , 2008 , 54, 698-705	6.7	90

(2018-2019)

176	Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. <i>Nature Catalysis</i> , 2019 , 2, 1124-1131	36.5	89	
175	Copper adparticle enabled selective electrosynthesis of n-propanol. <i>Nature Communications</i> , 2018 , 9, 4614	17.4	86	
174	Nanomorphology-Enhanced Gas-Evolution Intensifies CO2 Reduction Electrochemistry. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 4031-4040	8.3	84	
173	Flow-directed block copolymer micelle morphologies via microfluidic self-assembly. <i>Journal of the American Chemical Society</i> , 2011 , 133, 18853-64	16.4	84	
172	Thermal end effects on electroosmotic flow in a capillary. <i>International Journal of Heat and Mass Transfer</i> , 2004 , 47, 3145-3157	4.9	84	
171	Aquifer-on-a-chip: understanding pore-scale salt precipitation dynamics during CO2 sequestration. <i>Lab on A Chip</i> , 2013 , 13, 2508-18	7.2	83	
170	Microfluidics for sperm analysis and selection. <i>Nature Reviews Urology</i> , 2017 , 14, 707-730	5.5	80	
169	Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. <i>Science</i> , 2020 , 368, 1228-1233	33.3	78	
168	Lab-on-chip methodologies for the study of transport in porous media: energy applications. <i>Lab on A Chip</i> , 2008 , 8, 689-93	7.2	77	
167	Rapid Microfluidics-Based Measurement of CO2 Diffusivity in Bitumen. <i>Energy & Control of Cota Diffusivity in Bitumen</i> . <i>Energy & Cota Diffusivity in Bitumen</i> . <i>Energ</i>	4.1	74	
166	Nanohole arrays in metal films as optofluidic elements: progress and potential. <i>Microfluidics and Nanofluidics</i> , 2008 , 4, 107-116	2.8	70	
165	Field-emission from quantum-dot-in-perovskite solids. <i>Nature Communications</i> , 2017 , 8, 14757	17.4	68	
164	Steam-on-a-chip for oil recovery: the role of alkaline additives in steam assisted gravity drainage. <i>Lab on A Chip</i> , 2013 , 13, 3832-9	7.2	66	
163	Efficient Methane Electrosynthesis Enabled by Tuning Local CO Availability. <i>Journal of the American Chemical Society</i> , 2020 , 142, 3525-3531	16.4	65	
162	Electroosmotic velocity profiles in microchannels. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2003 , 222, 273-283	5.1	64	
161	Measurement of CO2 diffusivity for carbon sequestration: a microfluidic approach for reservoir-specific analysis. <i>Environmental Science & Environmental Science & Environment</i>	10.3	63	
160	Nanoporous membranes enable concentration and transport in fully wet paper-based assays. <i>Analytical Chemistry</i> , 2014 , 86, 8090-7	7.8	62	
159	Full Characterization of CO-Oil Properties On-Chip: Solubility, Diffusivity, Extraction Pressure, Miscibility, and Contact Angle. <i>Analytical Chemistry</i> , 2018 , 90, 2461-2467	7.8	58	

158	Bitumen II oluene Mutual Diffusion Coefficients Using Microfluidics. <i>Energy & Comp.; Fuels</i> , 2013 , 27, 2042-2043	2 0 48	57
157	Microfluidic and nanofluidic phase behaviour characterization for industrial CO, oil and gas. <i>Lab on A Chip</i> , 2017 , 17, 2740-2759	7.2	56
156	Self-Cleaning CO2 Reduction Systems: Unsteady Electrochemical Forcing Enables Stability. <i>ACS Energy Letters</i> , 2021 , 6, 809-815	20.1	56
155	Designing anion exchange membranes for CO2 electrolysers. <i>Nature Energy</i> , 2021 , 6, 339-348	62.3	56
154	Fluorescent Dyes for Visualizing Microplastic Particles and Fibers in Laboratory-Based Studies. <i>Environmental Science and Technology Letters</i> , 2019 , 6, 334-340	11	55
153	Roadmap for optofluidics. <i>Journal of Optics (United Kingdom)</i> , 2017 , 19, 093003	1.7	55
152	Efficient upgrading of CO to C fuel using asymmetric C-C coupling active sites. <i>Nature Communications</i> , 2019 , 10, 5186	17.4	55
151	Emerging microalgae technology: a review. Sustainable Energy and Fuels, 2018, 2, 13-38	5.8	53
150	Morphological control via chemical and shear forces in block copolymer self-assembly in the lab-on-chip. <i>ACS Nano</i> , 2013 , 7, 1424-36	16.7	52
149	Controlled self-assembly of quantum dots and block copolymers in a microfluidic device. <i>Langmuir</i> , 2008 , 24, 637-43	4	51
148	Quantification of ovarian cancer markers with integrated microfluidic concentration gradient and imaging nanohole surface plasmon resonance. <i>Analyst, The</i> , 2013 , 138, 1450-8	5	49
147	Paper-Based Quantification of Male Fertility Potential. Clinical Chemistry, 2016, 62, 458-65	5.5	46
146	Fast fluorescence-based microfluidic method for measuring minimum miscibility pressure of CO2 in crude oils. <i>Analytical Chemistry</i> , 2015 , 87, 3160-4	7.8	45
145	A plate-frame flow-through microfluidic fuel cell stack. <i>Journal of Power Sources</i> , 2011 , 196, 9481-9487	8.9	45
144	Controlled self-assembly of quantum dot-block copolymer colloids in multiphase microfluidic reactors. <i>Langmuir</i> , 2010 , 26, 716-23	4	45
143	Formation and shear-induced processing of quantum dot colloidal assemblies in a multiphase microfluidic chip. <i>Langmuir</i> , 2008 , 24, 10596-603	4	45
142	High-efficiency electrokinetic micromixing through symmetric sequential injection and expansion. <i>Lab on A Chip</i> , 2006 , 6, 1033-9	7.2	45
141	Direct and indirect electroosmotic flow velocity measurements in microchannels. <i>Journal of Colloid and Interface Science</i> , 2002 , 254, 184-9	9.3	45

140	Oxygen-tolerant electroproduction of C2 products from simulated flue gas. <i>Energy and Environmental Science</i> , 2020 , 13, 554-561	35.4	45
139	Capillary Condensation in 8 nm Deep Channels. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 497-503	6.4	42
138	Surface-enhanced Raman scattering (SERS) optrodes for multiplexed on-chip sensing of nile blue A and oxazine 720. <i>Lab on A Chip</i> , 2012 , 12, 1554-60	7.2	42
137	A miniaturized high-voltage integrated power supply for portable microfluidic applications. <i>Lab on A Chip</i> , 2004 , 4, 87-90	7.2	42
136	Condensation in One-Dimensional Dead-End Nanochannels. ACS Nano, 2017, 11, 304-313	16.7	41
135	Tuning OH binding energy enables selective electrochemical oxidation of ethylene to ethylene glycol. <i>Nature Catalysis</i> , 2020 , 3, 14-22	36.5	41
134	A sequential injection microfluidic mixing strategy. <i>Microfluidics and Nanofluidics</i> , 2005 , 1, 319-327	2.8	40
133	Pressure Drop in Rectangular Microchannels as Compared With Theory Based on Arbitrary Cross Section. <i>Journal of Fluids Engineering, Transactions of the ASME</i> , 2009 , 131,	2.1	39
132	High-Rate and Efficient Ethylene Electrosynthesis Using a Catalyst/Promoter/Transport Layer. <i>ACS Energy Letters</i> , 2020 , 5, 2811-2818	20.1	39
131	CO2 Electroreduction to Formate at a Partial Current Density of 930 mA cm2 with InP Colloidal Quantum Dot Derived Catalysts. <i>ACS Energy Letters</i> , 2021 , 6, 79-84	20.1	39
130	Suppressing the liquid product crossover in electrochemical CO2 reduction. SmartMat, 2021, 2, 12-16	22.8	38
129	Microfluidic pore-scale comparison of alcohol- and alkaline-based SAGD processes. <i>Journal of Petroleum Science and Engineering</i> , 2017 , 154, 139-149	4.4	37
128	Microfluidic Manufacturing of Polymeric Nanoparticles: Comparing Flow Control of Multiscale Structure in Single-Phase Staggered Herringbone and Two-Phase Reactors. <i>Langmuir</i> , 2016 , 32, 12781-	12 ¹ 789	37
127	Visualization and numerical modelling of microfluidic on-chip injection processes. <i>Journal of Colloid and Interface Science</i> , 2003 , 260, 431-9	9.3	37
126	Determination of dew point conditions for CO2 with impurities using microfluidics. <i>Environmental Science & Environmental Scie</i>	10.3	36
125	A dynamic loading method for controlling on-chip microfluidic sample injection. <i>Journal of Colloid and Interface Science</i> , 2003 , 266, 448-56	9.3	36
124	Numerical simulation of microfluidic injection processes in crossing microchannels. <i>Journal of Micromechanics and Microengineering</i> , 2003 , 13, 739-747	2	36
123	Deep learning for the classification of human sperm. <i>Computers in Biology and Medicine</i> , 2019 , 111, 103	3 / 12	35

122	Out-of-plane ion concentration polarization for scalable water desalination. Lab on A Chip, 2014 , 14, 68	1 - 52	35
121	Flow-directed assembly of block copolymer vesicles in the lab-on-a-chip. <i>Langmuir</i> , 2012 , 28, 15756-61	4	35
120	Hand-powered microfluidics: A membrane pump with a patient-to-chip syringe interface. <i>Biomicrofluidics</i> , 2012 , 6, 44102	3.2	34
119	Integrated electrochemical velocimetry for microfluidic devices. <i>Microfluidics and Nanofluidics</i> , 2007 , 3, 403-416	2.8	34
118	A penalty on photosynthetic growth in fluctuating light. Scientific Reports, 2017, 7, 12513	4.9	33
117	Predominance of sperm motion in corners. Scientific Reports, 2016, 6, 26669	4.9	32
116	Nanomodel visualization of fluid injections in tight formations. <i>Nanoscale</i> , 2018 , 10, 21994-22002	7.7	32
115	Joint tuning of nanostructured Cu-oxide morphology and local electrolyte programs high-rate CO2 reduction to C2H4. <i>Green Chemistry</i> , 2017 , 19, 4023-4030	10	31
114	Slab waveguide photobioreactors for microalgae based biofuel production. Lab on A Chip, 2012 , 12, 374	1 <i>9</i> <u>5</u>	31
113	Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene. <i>Joule</i> , 2021 , 5, 706-719	27.8	31
112	Identification of Microfibers in the Environment Using Multiple Lines of Evidence. <i>Environmental Science & Environmental Scie</i>	10.3	30
111	Accessory-free quantitative smartphone imaging of colorimetric paper-based assays. <i>Lab on A Chip</i> , 2019 , 19, 1991-1999	7.2	30
110	Efficient electrocatalytic conversion of carbon dioxide in a low-resistance pressurized alkaline electrolyzer. <i>Applied Energy</i> , 2020 , 261, 114305	10.7	30
109	Promoting CO methanation via ligand-stabilized metal oxide clusters as hydrogen-donating motifs. <i>Nature Communications</i> , 2020 , 11, 6190	17.4	30
108	Bubble nucleation and growth in nanochannels. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 8223-822	2 9 3.6	29
107	Asphaltene Deposition during Bitumen Extraction with Natural Gas Condensate and Naphtha. <i>Energy & Description of Energy & Des</i>	4.1	29
106	Microalgae on display: a microfluidic pixel-based irradiance assay for photosynthetic growth. <i>Lab on A Chip</i> , 2015 , 15, 3116-24	7.2	29
105	Low pressure supercritical CO extraction of astaxanthin from Haematococcus pluvialis demonstrated on a microfluidic chip. <i>Bioresource Technology</i> , 2018 , 250, 481-485	11	29

(2004-2018)

104	Nanoscale Phase Measurement for the Shale Challenge: Multicomponent Fluids in Multiscale Volumes. <i>Langmuir</i> , 2018 , 34, 9927-9935	4	28
103	Deep learning-based selection of human sperm with high DNA integrity. <i>Communications Biology</i> , 2019 , 2, 250	6.7	28
102	Enhanced multi-carbon alcohol electroproduction from CO via modulated hydrogen adsorption. <i>Nature Communications</i> , 2020 , 11, 3685	17.4	28
101	Low coordination number copper catalysts for electrochemical CO methanation in a membrane electrode assembly. <i>Nature Communications</i> , 2021 , 12, 2932	17.4	27
100	Single Pass CO2 Conversion Exceeding 85% in the Electrosynthesis of Multicarbon Products via Local CO2 Regeneration. <i>ACS Energy Letters</i> , 2021 , 6, 2952-2959	20.1	27
99	Biological Responses to Climate Change and Nanoplastics Are Altered in Concert: Full-Factor Screening Reveals Effects of Multiple Stressors on Primary Producers. <i>Environmental Science & Technology</i> , 2020 , 54, 2401-2410	10.3	25
98	Direct Visualization of Evaporation in a Two-Dimensional Nanoporous Model for Unconventional Natural Gas. <i>ACS Applied Nano Materials</i> , 2018 , 1, 1332-1338	5.6	25
97	Biomass-to-biocrude on a chip via hydrothermal liquefaction of algae. <i>Lab on A Chip</i> , 2016 , 16, 256-60	7.2	25
96	Microfluidic Synthesis of Photoresponsive Spool-Like Block Copolymer Nanoparticles: Flow-Directed Formation and Light-Triggered Dissociation. <i>Chemistry of Materials</i> , 2015 , 27, 8094-8104	9.6	25
95	Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices. <i>Accounts of Chemical Research</i> , 2020 , 53, 347-357	24.3	25
94	Disposable silicon-glass microfluidic devices: precise, robust and cheap. <i>Lab on A Chip</i> , 2018 , 18, 3872-38	8 9 0	25
93	Stable, active CO reduction to formate via redox-modulated stabilization of active sites. <i>Nature Communications</i> , 2021 , 12, 5223	17.4	25
92	Pore-scale analysis of condensing solvent bitumen extraction. <i>Fuel</i> , 2017 , 193, 284-293	7.1	24
91	Natural gas vaporization in a nanoscale throat connected model of shale: multi-scale, multi-component and multi-phase. <i>Lab on A Chip</i> , 2019 , 19, 272-280	7.2	24
90	Field tested milliliter-scale blood filtration device for point-of-care applications. <i>Biomicrofluidics</i> , 2013 , 7, 44111	3.2	24
89	Microfluidics-based measurement of solubility and diffusion coefficient of propane in bitumen. <i>Fuel</i> , 2017 , 210, 23-31	7.1	24
88	Flow-directed loading of block copolymer micelles with hydrophobic probes in a gas-liquid microreactor. <i>Langmuir</i> , 2013 , 29, 8385-94	4	24
87	Thermally induced velocity gradients in electroosmotic microchannel flows: the cooling influence of optical infrastructure. <i>Experiments in Fluids</i> , 2004 , 37, 872-882	2.5	24

86	Changes in mineral reactivity driven by pore fluid mobility in partially wetted porous media. <i>Chemical Geology</i> , 2017 , 463, 1-11	4.2	23
85	Microfluidic assessment of swimming media for motility-based sperm selection. <i>Biomicrofluidics</i> , 2015 , 9, 044113	3.2	23
84	Increased Temperature and Turbulence Alter the Effects of Leachates from Tire Particles on Fathead Minnow (). <i>Environmental Science & Environmental S</i>	10.3	23
83	Light dilution via wavelength management for efficient high-density photobioreactors. <i>Biotechnology and Bioengineering</i> , 2017 , 114, 1160-1169	4.9	22
82	Visualization of fracturing fluid dynamics in a nanofluidic chip. <i>Journal of Petroleum Science and Engineering</i> , 2018 , 165, 181-186	4.4	22
81	Lab-in-a-pen: a diagnostics format familiar to patients for low-resource settings. <i>Lab on A Chip</i> , 2014 , 14, 957-63	7.2	22
80	Self-adaptive Bioinspired Hummingbird-wing Stimulated Triboelectric Nanogenerators. <i>Scientific Reports</i> , 2017 , 7, 17143	4.9	22
79	Radial sample preconcentration. <i>Lab on A Chip</i> , 2011 , 11, 1102-9	7.2	22
78	Turning the corner in fertility: high DNA integrity of boundary-following sperm. <i>Lab on A Chip</i> , 2016 , 16, 2418-22	7.2	22
77	Partial wetting gas-liquid segmented flow microreactor. <i>Lab on A Chip</i> , 2010 , 10, 1732-4	7.2	21
77 76	Partial wetting gas-liquid segmented flow microreactor. <i>Lab on A Chip</i> , 2010 , 10, 1732-4 Laminar Fully Developed Flow in Periodically Converging Diverging Microtubes. <i>Heat Transfer Engineering</i> , 2010 , 31, 628-634	7.2	21
	Laminar Fully Developed Flow in Periodically Converging Diverging Microtubes. <i>Heat Transfer</i>	•	
76	Laminar Fully Developed Flow in Periodically Converging Diverging Microtubes. Heat Transfer Engineering, 2010, 31, 628-634 Culturing photosynthetic bacteria through surface plasmon resonance. Applied Physics Letters,	1.7	21
76 75	Laminar Fully Developed Flow in Periodically Converging Diverging Microtubes. Heat Transfer Engineering, 2010, 31, 628-634 Culturing photosynthetic bacteria through surface plasmon resonance. Applied Physics Letters, 2012, 101, 253701 Pore-scale analysis of steam-solvent coinjection: azeotropic temperature, dilution and asphaltene	1.7 3.4	21
76 75 74	Laminar Fully Developed Flow in Periodically Converging Diverging Microtubes. Heat Transfer Engineering, 2010, 31, 628-634 Culturing photosynthetic bacteria through surface plasmon resonance. Applied Physics Letters, 2012, 101, 253701 Pore-scale analysis of steam-solvent coinjection: azeotropic temperature, dilution and asphaltene deposition. Fuel, 2018, 220, 151-158 A photosynthetic-plasmonic-voltaic cell: Excitation of photosynthetic bacteria and current	1.7 3.4 7.1	21 21 20
76 75 74 73	Laminar Fully Developed Flow in Periodically Converging Diverging Microtubes. Heat Transfer Engineering, 2010, 31, 628-634 Culturing photosynthetic bacteria through surface plasmon resonance. Applied Physics Letters, 2012, 101, 253701 Pore-scale analysis of steam-solvent coinjection: azeotropic temperature, dilution and asphaltene deposition. Fuel, 2018, 220, 151-158 A photosynthetic-plasmonic-voltaic cell: Excitation of photosynthetic bacteria and current collection through a plasmonic substrate. Applied Physics Letters, 2014, 104, 043704 Gold-in-copper at low *CO coverage enables efficient electromethanation of CO. Nature	1.7 3.4 7.1 3.4	21 21 20 20
76 75 74 73 72	Laminar Fully Developed Flow in Periodically Converging Diverging Microtubes. Heat Transfer Engineering, 2010, 31, 628-634 Culturing photosynthetic bacteria through surface plasmon resonance. Applied Physics Letters, 2012, 101, 253701 Pore-scale analysis of steam-solvent coinjection: azeotropic temperature, dilution and asphaltene deposition. Fuel, 2018, 220, 151-158 A photosynthetic-plasmonic-voltaic cell: Excitation of photosynthetic bacteria and current collection through a plasmonic substrate. Applied Physics Letters, 2014, 104, 043704 Gold-in-copper at low *CO coverage enables efficient electromethanation of CO. Nature Communications, 2021, 12, 3387 A combined method for pore-scale optical and thermal characterization of SAGD. Journal of	1.7 3.4 7.1 3.4	21 21 20 20 20

(2016-2015)

68	Wavelength-selective plasmonics for enhanced cultivation of microalgae. <i>Applied Physics Letters</i> , 2015 , 106, 063902	3.4	19
67	Paper-based sperm DNA integrity analysis. <i>Analytical Methods</i> , 2016 , 8, 6260-6264	3.2	19
66	Laminated thin-film Teflon chips for petrochemical applications. <i>Lab on A Chip</i> , 2012 , 12, 4236-9	7.2	19
65	Silica-copper catalyst interfaces enable carbon-carbon coupling towards ethylene electrosynthesis. <i>Nature Communications</i> , 2021 , 12, 2808	17.4	19
64	Self-assembled nanoparticle-stabilized photocatalytic reactors. <i>Nanoscale</i> , 2016 , 8, 2107-15	7.7	18
63	Evanescent photosynthesis: exciting cyanobacteria in a surface-confined light field. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 4817-23	3.6	18
62	Effects of liquid conductivity differences on multi-component sample injection, pumping and stacking in microfluidic chips. <i>Lab on A Chip</i> , 2003 , 3, 173-9	7.2	18
61	Direct Measurement of the Fluid Phase Diagram. <i>Analytical Chemistry</i> , 2016 , 88, 6986-9	7.8	17
60	Microfluidics Underground: A Micro-Core Method for Pore Scale Analysis of Supercritical CO2 Reactive Transport in Saline Aquifers. <i>Journal of Fluids Engineering, Transactions of the ASME</i> , 2013 , 135,	2.1	17
59	Bubble Point Pressures of Hydrocarbon Mixtures in Multiscale Volumes from Density Functional Theory. <i>Langmuir</i> , 2018 , 34, 14058-14068	4	17
58	Direct visualization of fluid dynamics in sub-10 nm nanochannels. <i>Nanoscale</i> , 2017 , 9, 9556-9561	7.7	16
57	Fractal Flow Patterns in Hydrophobic Microfluidic Pore Networks: Experimental Modeling of Two-Phase Flow in Porous Electrodes. <i>Journal of the Electrochemical Society</i> , 2010 , 157, B760	3.9	16
56	Hydrodynamic dispersion of neutral solutes in nanochannels: the effect of streaming potential. <i>Microfluidics and Nanofluidics</i> , 2007 , 3, 723-728	2.8	16
55	When robotics met fluidics. <i>Lab on A Chip</i> , 2020 , 20, 709-716	7.2	16
54	Optothermal sample preconcentration and manipulation with temperature gradient focusing. <i>Microfluidics and Nanofluidics</i> , 2012 , 12, 221-228	2.8	15
53	Microbubble lensing-induced photobleaching (EBLIP) with application to microflow visualization. <i>Experiments in Fluids</i> , 2003 , 35, 178-187	2.5	15
52	CO2 Electroreduction to Methane at Production Rates Exceeding 100 mA/cm2. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 14668-14673	8.3	14
51	Breathable waveguides for combined light and CO2 delivery to microalgae. <i>Bioresource Technology</i> , 2016 , 209, 391-6	11	13

50	Dopant-tuned stabilization of intermediates promotes electrosynthesis of valuable C3 products. <i>Nature Communications</i> , 2019 , 10, 4807	17.4	13
49	Detection of bubble and dew point using optical thin-film interference. <i>Sensors and Actuators B: Chemical</i> , 2015 , 207, 640-649	8.5	13
48	Prediction of DNA Integrity from Morphological Parameters Using a Single-Sperm DNA Fragmentation Index Assay. <i>Advanced Science</i> , 2019 , 6, 1900712	13.6	12
47	Fluorescence in sub-10 nm channels with an optical enhancement layer. <i>Lab on A Chip</i> , 2018 , 18, 568-57	3 _{7.2}	12
46	Nanoparticle Stablized CO2 in Water Foam for Mobility Control in Enhanced Oil Recovery via Microfluidic Method 2014 ,		12
45	Evanescent cultivation of photosynthetic bacteria on thin waveguides. <i>Journal of Micromechanics and Microengineering</i> , 2014 , 24, 045017	2	12
44	Digestible Fluorescent Coatings for Cumulative Quantification of Microplastic Ingestion. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 62-67	11	11
43	Boride-derived oxygen-evolution catalysts. <i>Nature Communications</i> , 2021 , 12, 6089	17.4	11
42	Two-dimensional planar swimming selects for high DNA integrity sperm. Lab on A Chip, 2019, 19, 2161-2	2 † 67	10
41	Surface Plasmon Resonance for Crude Oil Characterization. <i>Energy & District Surface Plasmon Resonance for Crude Oil Characterization</i> . <i>Energy & District Surface Plasmon Resonance for Crude Oil Characterization</i> . <i>Energy & District Surface Plasmon Resonance for Crude Oil Characterization</i> .	4.1	9
40	The Full Pressure-Temperature Phase Envelope of a Mixture in 1000 Microfluidic Chambers. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 13962-13967	16.4	9
39	Geometrical Effects on the Temperature Distribution in a Half-Space Due to a Moving Heat Source. <i>Journal of Heat Transfer</i> , 2011 , 133,	1.8	9
38	Efficient electrosynthesis of n-propanol from carbon monoxide using a AgRullu catalyst. <i>Nature Energy</i> ,	62.3	9
37	Screening High-Temperature Foams with Microfluidics for Thermal Recovery Processes. <i>Energy & Energy Fuels</i> , 2021 , 35, 7866-7873	4.1	9
36	Dual gradients of light intensity and nutrient concentration for full-factorial mapping of photosynthetic productivity. <i>Lab on A Chip</i> , 2016 , 16, 2785-90	7.2	9
35	Reducing the crossover of carbonate and liquid products during carbon dioxide electroreduction. <i>Cell Reports Physical Science</i> , 2021 , 2, 100522	6.1	8
34	Periodic harvesting of microalgae from calcium alginate hydrogels for sustained high-density production. <i>Biotechnology and Bioengineering</i> , 2017 , 114, 2023-2031	4.9	7
33	Deformation of microdroplets in crude oil for rapid screening of enhanced oil recovery additives. Journal of Petroleum Science and Engineering, 2018 , 165, 298-304	4.4	7

32	Microfluidics and Their Macro Applications for the Oil and Gas Industry. <i>The Way Ahead</i> , 2015 , 11, 8-10		7
31	Downstream of the CO2 Electrolyzer: Assessing the Energy Intensity of Product Separation. <i>ACS Energy Letters</i> ,4405-4412	20.1	7
30	Accelerating Fluid Development on a Chip for Renewable Energy. Energy & Ene	14/21/26	7
29	FertDish: microfluidic sperm selection-in-a-dish for intracytoplasmic sperm injection. <i>Lab on A Chip</i> , 2021 , 21, 775-783	7.2	7
28	Carbon-efficient carbon dioxide electrolysers. Nature Sustainability,	22.1	7
27	Live sperm trap microarray for high throughput imaging and analysis. <i>Lab on A Chip</i> , 2019 , 19, 815-824	7.2	6
26	Advances in Microfluidic Fuel Cells 2009 , 99-139		6
25	Machine learning for sperm selection. <i>Nature Reviews Urology</i> , 2021 , 18, 387-403	5.5	6
24	Glycerol Oxidation Pairs with Carbon Monoxide Reduction for Low-Voltage Generation of C2 and C3 Product Streams. <i>ACS Energy Letters</i> ,3538-3544	20.1	6
23	A Platform for High-Throughput Assessments of Environmental Multistressors. <i>Advanced Science</i> , 2018 , 5, 1700677	13.6	5
22	Development of plasmonic substrates for biosensing 2008,		5
21	Electroosmotic flow steers neutral products and enables concentrated ethanol electroproduction from CO2. <i>Joule</i> , 2021 ,	27.8	5
20	Microfluidic liquid actuation through ground-directed electric discharge. <i>Microfluidics and Nanofluidics</i> , 2011 , 11, 653-662	2.8	4
19	Gold Adparticles on Silver Combine Low Overpotential and High Selectivity in Electrochemical CO2 Conversion. <i>ACS Applied Energy Materials</i> , 2021 , 4, 7504-7512	6.1	4
18	Microfluidic and nanofluidic integration of plasmonic substrates for biosensing 2009,		3
17	Concentrated Ethanol Electrosynthesis from CO via a Porous Hydrophobic Adlayer <i>ACS Applied Materials & Amp; Interfaces</i> , 2022 , 14, 4155-4162	9.5	3
16	Evaluation of a Microencapsulated Phase Change Slurry for Subsurface Energy Recovery. <i>Energy & Energy Fuels</i> , 2021 , 35, 10293-10302	4.1	3
15	Effects of Hydrogen Peroxide on Cyanobacterium Microcystis aeruginosa in the Presence of Nanoplastics. <i>ACS ES&T Water</i> , 2021 , 1, 1596-1607		3

14	The Full Pressure Temperature Phase Envelope of a Mixture in 1000 Microfluidic Chambers. <i>Angewandte Chemie</i> , 2017 , 129, 14150-14155	3.6	2
13	Portable audio electronics for impedance-based measurements in microfluidics. <i>Journal of Micromechanics and Microengineering</i> , 2010 , 20, 087001	2	2
12	Biaxial nanohole array sensing and optofluidic integration 2008,		2
11	Dynamic Microfluidic Photomasking. <i>Journal of Microelectromechanical Systems</i> , 2007 , 16, 1145-1151	2.5	2
10	Selection of high-quality sperm with thousands of parallel channels. <i>Lab on A Chip</i> , 2021 , 21, 2464-2475	7.2	2
9	Microplastics shift impacts of climate change on a plant-microbe mutualism: Temperature, CO, and tire wear particles. <i>Environmental Research</i> , 2022 , 203, 111727	7.9	2
8	Redox-mediated electrosynthesis of ethylene oxide from CO2 and water. <i>Nature Catalysis</i> , 2022 , 5, 185	- 3,82 5	2
7	Frontispiz: The Full Pressure Temperature Phase Envelope of a Mixture in 1000 Microfluidic Chambers. <i>Angewandte Chemie</i> , 2017 , 129,	3.6	1
6	A common contaminant shifts impacts of climate change on a plant-microbe mutualism: effects of temperature, CO2 and leachate from tire wear particles		1
5	AbCelleraß success is unprecedented: what have we learned?. <i>Lab on A Chip</i> , 2021 , 21, 2330-2332	7.2	Ο
4	Past, Present, and Future of Microfluidic Fluid Analysis in the Energy Industry. <i>Energy & amp; Fuels</i> ,	4.1	О
3	Nanohole Arrays in Metal Films as Integrated Chemical Sensors and Biosensors. <i>Springer Series on Chemical Sensors and Biosensors</i> , 2010 , 155-179	2	
2	Planar and Three-Dimensional Microfluidic Fuel Cell Architectures 2007 , 941		

Plasmonics **2010**, 18-1-18-37