
James Keeble

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8480586/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	UKESM1: Description and Evaluation of the U.K. Earth System Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 4513-4558.	3.8	448

2 Description and evaluation of the UKCA stratosphere–troposphere chemistry scheme (StratTrop vn) Tj ETQq0 0 0 rgBT /Overlock 10 T

3	Tropospheric ozone in CMIP6 simulations. Atmospheric Chemistry and Physics, 2021, 21, 4187-4218.	4.9	89
4	Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison. Atmospheric Chemistry and Physics, 2021, 21, 853-874.	4.9	65
5	Delay in recovery of the Antarctic ozone hole from unexpected CFC-11 emissions. Nature Communications, 2019, 10, 5781.	12.8	58
6	Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100. Atmospheric Chemistry and Physics, 2021, 21, 5015-5061.	4.9	54
7	The impact of polar stratospheric ozone loss on Southern Hemisphere stratospheric circulation and climate. Atmospheric Chemistry and Physics, 2014, 14, 13705-13717.	4.9	53
8	Processes Controlling Tropical Tropopause Temperature and Stratospheric Water Vapor in Climate Models. Journal of Climate, 2015, 28, 6516-6535.	3.2	47
9	How sensitive is the recovery of stratospheric ozone to changes in concentrations of very short-lived bromocarbons?. Atmospheric Chemistry and Physics, 2014, 14, 10431-10438.	4.9	34
10	Circulation anomalies in the Southern Hemisphere and ozone changes. Atmospheric Chemistry and Physics, 2013, 13, 10677-10688.	4.9	29
11	Assessment of pre-industrial to present-day anthropogenic climate forcing in UKESM1. Atmospheric Chemistry and Physics, 2021, 21, 1211-1243.	4.9	29
12	Inclusion of mountain-wave-induced cooling for the formation of PSCs over the Antarctic Peninsula in a chemistry–climate model. Atmospheric Chemistry and Physics, 2015, 15, 1071-1086.	4.9	27
13	Climate change penalty and benefit on surface ozone: a global perspective based on CMIP6 earth system models. Environmental Research Letters, 2022, 17, 024014.	5.2	27
14	Diagnosing the radiative and chemical contributions to future changes in tropical column ozone with the UM-UKCA chemistry–climate model. Atmospheric Chemistry and Physics, 2017, 17, 13801-13818.	4.9	23
15	On ozone trend detection: using coupled chemistry–climate simulations to investigate early signs of total column ozone recovery. Atmospheric Chemistry and Physics, 2018, 18, 7625-7637.	4.9	18
16	On the Changing Role of the Stratosphere on the Tropospheric Ozone Budget: 1979–2010. Geophysical Research Letters, 2020, 47, e2019GL086901.	4.0	18
17	Heterogeneous reaction of ClONO ₂ with TiO ₂ and SiO ₂ aerosol particles: implications for stratospheric particle injection for climate engineering. Atmospheric Chemistry and Physics. 2016. 16. 15397-15412.	4.9	16
18	Reconciling the climate and ozone response to the 1257 CE Mount Samalas eruption. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26651-26659.	7.1	15

JAMES KEEBLE

#	Article	IF	CITATIONS
19	Stratospheric Ozone Changes From Explosive Tropical Volcanoes: Modeling and Ice Core Constraints. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032290.	3.3	14
20	The Influence of Zonally Asymmetric Stratospheric Ozone Changes on the Arctic Polar Vortex Shift. Journal of Climate, 2020, 33, 4641-4658.	3.2	14
21	Improvements to stratospheric chemistry scheme in the UM-UKCA (v10.7) model: solar cycle and heterogeneous reactions. Geoscientific Model Development, 2019, 12, 1227-1239.	3.6	12
22	Modelling the potential impacts of the recent, unexpected increase in CFC-11 emissions on total column ozone recovery. Atmospheric Chemistry and Physics, 2020, 20, 7153-7166.	4.9	10
23	Regional Features of Long-Term Exposure to PM2.5 Air Quality over Asia under SSP Scenarios Based on CMIP6 Models. International Journal of Environmental Research and Public Health, 2021, 18, 6817.	2.6	10
24	Prescribing Zonally Asymmetric Ozone Climatologies in Climate Models: Performance Compared to a Chemistry limate Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 918-933.	3.8	8
25	The Evaluation of the North Atlantic Climate System in UKESM1 Historical Simulations for CMIP6. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002126.	3.8	8
26	Polar stratospheric clouds initiated by mountain waves in a global chemistry–climate model: a missing piece in fully modelling polar stratospheric ozone depletion. Atmospheric Chemistry and Physics, 2020, 20, 12483-12497.	4.9	8
27	Evaluating the Ozone Valley over the Tibetan Plateau in CMIP6 Models. Advances in Atmospheric Sciences, 0, , 1.	4.3	7
28	The Impacts of Aerosol Emissions on Historical Climate in UKESM1. Atmosphere, 2020, 11, 1095.	2.3	5
29	Attribution of Stratospheric and Tropospheric Ozone Changes Between 1850 and 2014 in CMIP6 Models. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	5
30	Using Machine Learning to Make Computationally Inexpensive Projections of 21st Century Stratospheric Column Ozone Changes in the Tropics. Frontiers in Earth Science, 2021, 8, .	1.8	1