Jason Stafford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8480491/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Foam flows in turbulent liquid exfoliation of layered materials and implications for graphene production and inline characterisation. Chemical Engineering Research and Design, 2022, 177, 245-254.	5.6	2
2	Challenges surrounding nanosheets and their application to solar-driven photocatalytic water treatment. Materials Advances, 2022, 3, 4103-4131.	5.4	5
3	Simulation of interacting elastic sheets in shear flow: Insights into buckling, sliding, and reassembly of graphene nanosheets in sheared liquids. Physics of Fluids, 2022, 34, .	4.0	7
4	Vehicle non-exhaust emissions – Revealing the pathways from source to environmental exposure. Environmental Pollution, 2021, 268, 115654.	7.5	2
5	Implementing Superhydrophobic Surfaces within Various Condensation Environments: A Review. Advanced Materials Interfaces, 2021, 8, 2001442.	3.7	21
6	Deposition of particle pollution in turbulent forced-air cooling. Aerosol Science and Technology, 2021, 55, 486-500.	3.1	2
7	Real-time monitoring and hydrodynamic scaling of shear exfoliated graphene. 2D Materials, 2021, 8, 025029.	4.4	10
8	Cooling in Poor Air Quality Environments—Impact of Fan Operation on Particle Deposition. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11, 1206-1213.	2.5	3
9	Numerical simulations of a falling film on the inner surface of a rotating cylinder. Physical Review E, 2020, 102, 043106.	2.1	0
10	The thermal and hydrodynamic behaviour of confined, normally impinging laminar slot jets. International Journal of Heat and Mass Transfer, 2018, 123, 40-53.	4.8	11
11	Towards scaleâ€up of graphene production via nonoxidizing liquid exfoliation methods. AICHE Journal, 2018, 64, 3246-3276.	3.6	32
12	Passive Control and Enhancement of Low Reynolds Number Slot Jets Through the Use of Tabs and Chevrons. Journal of Heat Transfer, 2018, 140, .	2.1	4
13	Visualization of three-dimensional structures shed by an oscillating beam. Journal of Fluids and Structures, 2017, 70, 450-463.	3.4	23
14	Aerodynamic Performance of a Vibrating Piezoelectric Blade Under Varied Operational and Confinement States. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7, 751-761.	2.5	6
15	Principle-based design of distributed multiphase segmented flow. International Journal of Heat and Mass Transfer, 2016, 100, 508-521.	4.8	3
16	The characterization of a low-profile channel–confined jet for targeted hot-spot cooling in microfluidic applications. International Journal of Heat and Mass Transfer, 2016, 101, 620-628.	4.8	11
17	The hydrodynamic and heat transfer behavior downstream of a channel obstruction in the laminar flow regime. International Journal of Heat and Mass Transfer, 2016, 101, 1042-1052.	4.8	2
18	The influence of the stagnation zone on the fluid dynamics at the nozzle exit of a confined and submerged impinging jet. Experiments in Fluids, 2016, 57, 1.	2.4	13

JASON STAFFORD

#	Article	IF	CITATIONS
19	A visualization of the flow and heat transfer from an oblique impinging jet generated in a square miniature channel. Journal of Visualization, 2016, 19, 11-14.	1.8	2
20	The heat transfer performance in a square channel downstream of a representative shape memory alloy structure for microfluidics applications. , 2015, , .		4
21	The Influence of Confinement on the Hydrodynamic Characteristics of a Cylindrical Pillar Within a Microchannel. , 2015, , .		0
22	A comparison between the hydrodynamic characteristics of 3D-printed polymer and etched silicon microchannels. Microfluidics and Nanofluidics, 2015, 19, 385-394.	2.2	13
23	On the hydrodynamic characterization of a passive Shape Memory Alloy valve. Applied Thermal Engineering, 2015, 75, 731-737.	6.0	17
24	Hydrodynamic characterization of a passive shape memory alloy valve. Journal of Physics: Conference Series, 2014, 525, 012010.	0.4	2
25	Investigation of Multiple Miniature Axial Fan Cooling Solutions and Thermal Modeling Approaches. Journal of Electronic Packaging, Transactions of the ASME, 2014, 136, .	1.8	7
26	High fidelity phase locked PIV measurements analysing the flow fields surrounding an oscillating piezoelectric fan. Journal of Physics: Conference Series, 2014, 525, 012013.	0.4	10
27	Aerodynamic performance of a vibrating piezoelectric fan under varied operational conditions. Journal of Physics: Conference Series, 2014, 525, 012025.	0.4	1
28	Configurations for single-scale cylinder pairs in natural convection. International Journal of Thermal Sciences, 2014, 84, 62-74.	4.9	16
29	A dimensional comparison between embedded 3D-printed and silicon microchannels. Journal of Physics: Conference Series, 2014, 525, 012009.	0.4	7
30	A Compact Modeling Approach to Enhance Collaborative Design of Thermal-Fluid Systems. Journal of Electronic Packaging, Transactions of the ASME, 2014, 136, .	1.8	3
31	Experimental characterization of novel microdiffuser elements. Journal of Physics: Conference Series, 2014, 525, 012008.	0.4	1
32	Heat Transfer and Fluid Mechanics from a Piezoelectric Fan Operating in Its Second Resonant Frequency Mode. , 2014, , .		1
33	Finless Heat Sinks, High Performance and Low Cost for Low Profile Cooling Applications. Journal of Thermal Science and Engineering Applications, 2013, 5, .	1.5	1
34	Development and validation of a compact thermal model for an aircraft compartment. Applied Thermal Engineering, 2013, 61, 65-74.	6.0	15
35	Mechanical Characterisation of the NiTi Shape Memory Alloy for Microfluidic Valve Applications. Materials Research Society Symposia Proceedings, 2013, 1581, 1.	0.1	0
36	Rarefied Conditions in the Convective-Diffusive Regimes of a Disc in Natural Convection. , 2013, , .		1

Rarefied Conditions in the Convective-Diffusive Regimes of a Disc in Natural Convection. , 2013, , . 36

JASON STAFFORD

#	Article	IF	CITATIONS
37	Development of Compact Thermal–Fluid Models at the Electronic Equipment Level. Journal of Thermal Science and Engineering Applications, 2012, 4, .	1.5	9
38	The Evolution of Surface Convection Patterns Downstream of an Axial Fan with Tangentially-Mounted Hub Supports. Journal of Heat Transfer, 2012, 134, .	2.1	0
39	Thermal Performance Characteristics of Integrated Cooling Solutions Consisting of Multiple Miniature Fans. Journal of Physics: Conference Series, 2012, 395, 012029.	0.4	2
40	A statistical analysis for time-averaged turbulent and fluctuating flow fields using Particle Image Velocimetry. Flow Measurement and Instrumentation, 2012, 26, 1-9.	2.0	33
41	The effect of global cross flows on the flow field and local heat transfer performance of miniature centrifugal fans. International Journal of Heat and Mass Transfer, 2012, 55, 1970-1985.	4.8	10
42	Development of Compact Thermal-Fluid Models at the Electronic Equipment Level. , 2011, , .		0
43	A study on the flow field and local heat transfer performance due to geometric scaling of centrifugal fans. International Journal of Heat and Fluid Flow, 2011, 32, 1160-1172.	2.4	7
44	Local heat transfer performance and exit flow characteristics of a miniature axial fan. International Journal of Heat and Fluid Flow, 2010, 31, 952-960.	2.4	15
45	Fluid structures generated from a low Reynolds number miniature radial fan. Journal of Visualization, 2010, 13, 275-276.	1.8	1
46	Flat plate heat transfer with impinging axial fan flows. International Journal of Heat and Mass Transfer, 2010, 53, 5629-5638.	4.8	21
47	A Novel Approach to Low Profile Heat Sink Design. Journal of Heat Transfer, 2010, 132, .	2.1	13
48	An Experimental Study on the Design of Miniature Heat Sinks for Forced Convection Air Cooling. Journal of Heat Transfer, 2009, 131, .	2.1	34
49	An Experimental and Theoretical Study of Finned and Finless Heat Sinks for Low Profile Applications. , 2009, , .		1
50	Characterizing convective heat transfer using infrared thermography and the heated-thin-foil technique. Measurement Science and Technology, 2009, 20, 105401.	2.6	23