Olivier Le Contel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8480443/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Space Physics Environment Data Analysis System (SPEDAS). Space Science Reviews, 2019, 215, 9.	3.7	332
2	Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath. Nature, 2018, 557, 202-206.	13.7	263
3	Identifying the Driver of Pulsating Aurora. Science, 2010, 330, 81-84.	6.0	249
4	Electron-scale dynamics of the diffusion region during symmetric magnetic reconnection in space. Science, 2018, 362, 1391-1395.	6.0	221
5	The Search-Coil Magnetometer for MMS. Space Science Reviews, 2016, 199, 257-282.	3.7	212
6	The Search Coil Magnetometer for THEMIS. Space Science Reviews, 2008, 141, 265-275.	3.7	196
7	An Observation Linking the Origin of Plasmaspheric Hiss to Discrete Chorus Emissions. Science, 2009, 324, 775-778.	6.0	173
8	THEMIS analysis of observed equatorial electron distributions responsible for the chorus excitation. Journal of Geophysical Research, 2010, 115, .	3.3	148
9	First Results of the THEMIS Search Coil Magnetometers. Space Science Reviews, 2008, 141, 509-534.	3.7	122
10	Typical properties of rising and falling tone chorus waves. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	100
11	Electron scale structures and magnetic reconnection signatures in the turbulent magnetosheath. Geophysical Research Letters, 2016, 43, 5969-5978.	1.5	92
12	MMS observations of whistler waves in electron diffusion region. Geophysical Research Letters, 2017, 44, 3954-3962.	1.5	89
13	Multievent study of the correlation between pulsating aurora and whistler mode chorus emissions. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	85
14	Magnetospheric Multiscale Observations of Electron Vortex Magnetic Hole in the Turbulent Magnetosheath Plasma. Astrophysical Journal Letters, 2017, 836, L27.	3.0	85
15	Turbulent heating and crossâ€field transport near the magnetopause from THEMIS. Geophysical Research Letters, 2008, 35, .	1.5	84
16	Quasi-parallel whistler mode waves observed by THEMIS during near-earth dipolarizations. Annales Geophysicae, 2009, 27, 2259-2275.	0.6	83
17	Observations of turbulence in a Kelvinâ€Helmholtz event on 8 September 2015 by the Magnetospheric Multiscale mission. Journal of Geophysical Research: Space Physics, 2016, 121, 11,021.	0.8	81
18	Properties of the Turbulence Associated with Electron-only Magnetic Reconnection in Earth's Magnetosheath. Astrophysical Journal Letters, 2019, 877, L37.	3.0	80

#	Article	IF	CITATIONS
19	Structures of dayside whistlerâ€mode waves deduced from conjugate diffuse aurora. Journal of Geophysical Research: Space Physics, 2013, 118, 664-673.	0.8	76
20	Electron Jet Detected by MMS at Dipolarization Front. Geophysical Research Letters, 2018, 45, 556-564.	1.5	75
21	Quantified energy dissipation rates in the terrestrial bow shock: 2. Waves and dissipation. Journal of Geophysical Research: Space Physics, 2014, 119, 6475-6495.	0.8	74
22	MMS Observation of Magnetic Reconnection in the Turbulent Magnetosheath. Journal of Geophysical Research: Space Physics, 2017, 122, 11,442.	0.8	73
23	The quasiâ€electrostatic mode of chorus waves and electron nonlinear acceleration. Journal of Geophysical Research: Space Physics, 2014, 119, 1606-1626.	0.8	70
24	Magnetic Reconnection, Turbulence, and Particle Acceleration: Observations in the Earth's Magnetotail. Geophysical Research Letters, 2018, 45, 3338-3347.	1.5	69
25	Electron jet of asymmetric reconnection. Geophysical Research Letters, 2016, 43, 5571-5580.	1.5	66
26	Magnetospheric Multiscale observations of largeâ€amplitude, parallel, electrostatic waves associated with magnetic reconnection at the magnetopause. Geophysical Research Letters, 2016, 43, 5626-5634.	1.5	66
27	A statistical study of kineticâ€size magnetic holes in turbulent magnetosheath: MMS observations. Journal of Geophysical Research: Space Physics, 2017, 122, 8577-8588.	0.8	64
28	Turbulence-Driven Ion Beams in the Magnetospheric Kelvin-Helmholtz Instability. Physical Review Letters, 2019, 122, 035102.	2.9	62
29	Observational evidence of the generation mechanism for rising-tone chorus. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	61
30	Observations of whistler mode waves with nonlinear parallel electric fields near the dayside magnetic reconnection separatrix by the Magnetospheric Multiscale mission. Geophysical Research Letters, 2016, 43, 5909-5917.	1.5	61
31	Global distribution of electrostatic electron cyclotron harmonic waves observed on THEMIS. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	54
32	Wave normal angles of whistler mode chorus rising and falling tones. Journal of Geophysical Research: Space Physics, 2014, 119, 9567-9578.	0.8	54
33	MMS observations of ionâ€scale magnetic island in the magnetosheath turbulent plasma. Geophysical Research Letters, 2016, 43, 7850-7858.	1.5	53
34	THEMIS observation of chorus elements without a gap at half the gyrofrequency. Journal of Geophysical Research, 2012, 117, .	3.3	52
35	Higherâ€Order Turbulence Statistics in the Earth's Magnetosheath and the Solar Wind Using Magnetospheric Multiscale Observations. Journal of Geophysical Research: Space Physics, 2018, 123, 9941-9954.	0.8	51
36	Electron Heating at Kinetic Scales in Magnetosheath Turbulence. Astrophysical Journal, 2017, 836, 247.	1.6	50

#	Article	IF	CITATIONS
37	Multispacecraft analysis of dipolarization fronts and associated whistler wave emissions using MMS data. Geophysical Research Letters, 2016, 43, 7279-7286.	1.5	49
38	Waves in Kinetic cale Magnetic Dips: MMS Observations in the Magnetosheath. Geophysical Research Letters, 2019, 46, 523-533.	1.5	49
39	Solar Wind Turbulence Studies Using MMS Fast Plasma Investigation Data. Astrophysical Journal, 2018, 866, 81.	1.6	48
40	Quantified energy dissipation rates in the terrestrial bow shock: 1. Analysis techniques and methodology. Journal of Geophysical Research: Space Physics, 2014, 119, 6455-6474.	0.8	47
41	Electron Scattering by High-frequency Whistler Waves at Earth's Bow Shock. Astrophysical Journal Letters, 2017, 842, L11.	3.0	46
42	Drift waves, intense parallel electric fields, and turbulence associated with asymmetric magnetic reconnection at the magnetopause. Geophysical Research Letters, 2017, 44, 2978-2986.	1.5	46
43	Observations of Whistler Waves Correlated with Electron-scale Coherent Structures in the Magnetosheath Turbulent Plasma. Astrophysical Journal, 2018, 861, 29.	1.6	46
44	Universality of Lower Hybrid Waves at Earth's Magnetopause. Journal of Geophysical Research: Space Physics, 2019, 124, 8727-8760.	0.8	45
45	Whistler mode waves and Hall fields detected by MMS during a dayside magnetopause crossing. Geophysical Research Letters, 2016, 43, 5943-5952.	1.5	44
46	Multipoint Observations of Energetic Particle Injections and Substorm Activity During a Conjunction Between Magnetospheric Multiscale (MMS) and Van Allen Probes. Journal of Geophysical Research: Space Physics, 2017, 122, 11,481.	0.8	42
47	Observational Evidence for Stochastic Shock Drift Acceleration of Electrons at the Earth's Bow Shock. Physical Review Letters, 2020, 124, 065101.	2.9	42
48	Chorus source region localization in the Earth's outer magnetosphere using THEMIS measurements. Annales Geophysicae, 2010, 28, 1377-1386.	0.6	41
49	Localized Oscillatory Energy Conversion in Magnetopause Reconnection. Geophysical Research Letters, 2018, 45, 1237-1245.	1.5	41
50	Evidence of Electron Acceleration at a Reconnecting Magnetopause. Geophysical Research Letters, 2019, 46, 5645-5652.	1.5	41
51	Magnetic island formation between largeâ€scale flow vortices at an undulating postnoon magnetopause for northward interplanetary magnetic field. Journal of Geophysical Research, 2009, 114, .	3.3	40
52	Rippled Electronâ€Scale Structure of a Dipolarization Front. Geophysical Research Letters, 2018, 45, 12,116.	1.5	38
53	Electron Bulk Acceleration and Thermalization at Earth's Quasiperpendicular Bow Shock. Physical Review Letters, 2018, 120, 225101.	2.9	38
54	Polynomial Reconstruction of the Reconnection Magnetic Field Observed by Multiple Spacecraft. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027481.	0.8	38

#	Article	IF	CITATIONS
55	Highâ€Resolution Measurements of the Crossâ€Shock Potential, Ion Reflection, and Electron Heating at an Interplanetary Shock by MMS. Journal of Geophysical Research: Space Physics, 2019, 124, 3961-3978.	0.8	36
56	Observations of Particle Acceleration in Magnetic Reconnection–driven Turbulence. Astrophysical Journal, 2020, 898, 154.	1.6	36
57	Magnetic Reconnection at a Thin Current Sheet Separating Two Interlaced Flux Tubes at the Earth's Magnetopause. Journal of Geophysical Research: Space Physics, 2018, 123, 1779-1793.	0.8	35
58	Electronâ€Driven Dissipation in a Tailward Flow Burst. Geophysical Research Letters, 2019, 46, 5698-5706.	1.5	35
59	Intense Electric Fields and Electronâ€Scale Substructure Within Magnetotail Flux Ropes as Revealed by the Magnetospheric Multiscale Mission. Geophysical Research Letters, 2018, 45, 8783-8792.	1.5	34
60	Electron Diffusion Regions in Magnetotail Reconnection Under Varying Guide Fields. Geophysical Research Letters, 2019, 46, 6230-6238.	1.5	33
61	Multiscale Currents Observed by MMS in the Flow Braking Region. Journal of Geophysical Research: Space Physics, 2018, 123, 1260-1278.	0.8	32
62	Magnetospheric Multiscale Observations of an Ion Diffusion Region With Large Guide Field at the Magnetopause: Current System, Electron Heating, and Plasma Waves. Journal of Geophysical Research: Space Physics, 2018, 123, 1834-1852.	0.8	32
63	Highâ€Frequency Wave Generation in Magnetotail Reconnection: Linear Dispersion Analysis. Geophysical Research Letters, 2019, 46, 4089-4097.	1.5	32
64	Lower Hybrid Drift Waves and Electromagnetic Electron Spaceâ€Phase Holes Associated With Dipolarization Fronts and Fieldâ€Aligned Currents Observed by the Magnetospheric Multiscale Mission During a Substorm. Journal of Geophysical Research: Space Physics, 2017, 122, 12,236.	0.8	31
65	Electron Phase‧pace Holes in Three Dimensions: Multispacecraft Observations by Magnetospheric Multiscale. Journal of Geophysical Research: Space Physics, 2018, 123, 9963-9978.	0.8	31
66	Electron Heating by Debye-Scale Turbulence in Guide-Field Reconnection. Physical Review Letters, 2020, 124, 045101.	2.9	31
67	Largeâ€Amplitude Highâ€Frequency Waves at Earth's Magnetopause. Journal of Geophysical Research: Space Physics, 2018, 123, 2630-2657.	0.8	30
68	Turbulence-driven magnetic reconnection and the magnetic correlation length: Observations from Magnetospheric Multiscale in Earth's magnetosheath. Physics of Plasmas, 2022, 29, .	0.7	30
69	Estimation of magnetic field mapping accuracy using the pulsating aurora-chorus connection. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	29
70	Lower-Hybrid Drift Waves Driving Electron Nongyrotropic Heating and Vortical Flows in a Magnetic Reconnection Layer. Physical Review Letters, 2020, 125, 025103.	2.9	29
71	Electron Scattering by Low-frequency Whistler Waves at Earth's Bow Shock. Astrophysical Journal, 2019, 886, 53.	1.6	28
72	Generation of Electron Whistler Waves at the Mirror Mode Magnetic Holes: MMS Observations and PIC Simulation. Journal of Geophysical Research: Space Physics, 2018, 123, 6383-6393.	0.8	27

#	Article	IF	CITATIONS
73	The Properties of Lion Roars and Electron Dynamics in Mirror Mode Waves Observed by the Magnetospheric MultiScale Mission. Journal of Geophysical Research: Space Physics, 2018, 123, 93-103.	0.8	26
74	Electron Bernstein waves driven by electron crescents near the electron diffusion region. Nature Communications, 2020, 11, 141.	5.8	26
75	Energy budget and mechanisms of cold ion heating in asymmetric magnetic reconnection. Journal of Geophysical Research: Space Physics, 2017, 122, 9396-9413.	0.8	24
76	New Insights into the Nature of Turbulence in the Earth's Magnetosheath Using Magnetospheric MultiScale Mission Data. Astrophysical Journal, 2018, 859, 127.	1.6	23
77	Electron Inflow Velocities and Reconnection Rates at Earth's Magnetopause and Magnetosheath. Geophysical Research Letters, 2020, 47, e2020GL089082.	1.5	23
78	The Dynamics of a High Mach Number Quasi-perpendicular Shock: MMS Observations. Astrophysical Journal, 2021, 908, 40.	1.6	23
79	The THEMIS Magnetic Cleanliness Program. Space Science Reviews, 2008, 141, 171-184.	3.7	22
80	Optimized merging of search coil and fluxgate data for MMS. Geoscientific Instrumentation, Methods and Data Systems, 2016, 5, 521-530.	0.6	22
81	The nonlinear behavior of whistler waves at the reconnecting dayside magnetopause as observed by the Magnetospheric Multiscale mission: A case study. Journal of Geophysical Research: Space Physics, 2017, 122, 5487-5501.	0.8	22
82	Automatic Classification of Plasma Regions in Near-Earth Space With Supervised Machine Learning: Application to Magnetospheric Multi Scale 2016–2019 Observations. Frontiers in Astronomy and Space Sciences, 2020, 7, .	1.1	22
83	MMS Observations of Kinetic-size Magnetic Holes in the Terrestrial Magnetotail Plasma Sheet. Astrophysical Journal, 2019, 875, 113.	1.6	21
84	Cluster observations of whistler waves correlated with ionâ€scale magnetic structures during the 17 August 2003 substorm event. Journal of Geophysical Research: Space Physics, 2013, 118, 6072-6089.	0.8	20
85	Electron Energization at a Reconnecting Magnetosheath Current Sheet. Geophysical Research Letters, 2018, 45, 8081-8090.	1.5	20
86	A Survey of Plasma Waves Appearing Near Dayside Magnetopause Electron Diffusion Region Events. Journal of Geophysical Research: Space Physics, 2019, 124, 7837-7849.	0.8	20
87	Wave Phenomena and Beamâ€Plasma Interactions at the Magnetopause Reconnection Region. Journal of Geophysical Research: Space Physics, 2018, 123, 1118-1133.	0.8	19
88	Local Excitation of Whistler Mode Waves and Associated Langmuir Waves at Dayside Reconnection Regions. Geophysical Research Letters, 2018, 45, 8793-8802.	1.5	19
89	Investigation of Electron Distribution Functions Associated With Whistler Waves at Dipolarization Fronts in the Earth's Magnetotail: MMS Observations. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028268.	0.8	19
90	MMS Observations of Intense Whistler Waves Within Earth's Supercritical Bow Shock: Source Mechanism andÂImpact on Shock Structure and Plasma Transport. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027290.	0.8	19

#	Article	IF	CITATIONS
91	Whistler waves observed by Solar Orbiter/RPW between 0.5 AU and 1 AU. Astronomy and Astrophysics, 2021, 656, A24.	2.1	19
92	Self-consistent quasi-static radial transport during the substorm growth phase. Journal of Geophysical Research, 2000, 105, 12929-12944.	3.3	18
93	What is the nature of magnetosheath FTEs?. Journal of Geophysical Research: Space Physics, 2015, 120, 4576-4595.	0.8	18
94	Poynting vector and wave vector directions of equatorial chorus. Journal of Geophysical Research: Space Physics, 2016, 121, 11,912.	0.8	18
95	Examining Coherency Scales, Substructure, and Propagation of Whistler Mode Chorus Elements With Magnetospheric Multiscale (MMS). Journal of Geophysical Research: Space Physics, 2017, 122, 11,201.	0.8	18
96	Whistler Waves Driven by Fieldâ€Aligned Streaming Electrons in the Nearâ€Earth Magnetotail Reconnection. Geophysical Research Letters, 2019, 46, 5045-5054.	1.5	18
97	Magnetic Reconnection in Three Dimensions: Modeling and Analysis of Electromagnetic Drift Waves in the Adjacent Current Sheet. Journal of Geophysical Research: Space Physics, 2019, 124, 10085-10103.	0.8	18
98	Modeling MMS Observations at the Earth's Magnetopause with Hybrid Simulations of Alfvénic Turbulence. Astrophysical Journal, 2020, 898, 175.	1.6	17
99	Coordinated observations of two types of diffuse auroras near magnetic local noon by Magnetospheric Multiscale mission and ground allâ€sky camera. Geophysical Research Letters, 2017, 44, 8130-8139.	1.5	16
100	Near-Earth plasma sheet boundary dynamics during substorm dipolarization. Earth, Planets and Space, 2017, 69, 129.	0.9	15
101	On the deviation from Maxwellian of the ion velocity distribution functions in the turbulentÂmagnetosheath. Journal of Plasma Physics, 2020, 86, .	0.7	15
102	Comparative Analysis of the Various Generalized Ohm's Law Terms in Magnetosheath Turbulence as Observed by Magnetospheric Multiscale. Journal of Geophysical Research: Space Physics, 2021, 126, 2020JA028447.	0.8	15
103	MMS Observations of the Multiscale Wave Structures and Parallel Electron Heating in the Vicinity of the Southern Exterior Cusp. Journal of Geophysical Research: Space Physics, 2021, 126, e2019JA027698.	0.8	15
104	Structure of a Perturbed Magnetic Reconnection Electron Diffusion Region in the Earth's Magnetotail. Physical Review Letters, 2021, 127, 215101.	2.9	15
105	Direct observations of anomalous resistivity and diffusion in collisionless plasma. Nature Communications, 2022, 13, .	5.8	15
106	Observations and modeling of forward and reflected chorus waves captured by THEMIS. Annales Geophysicae, 2011, 29, 541-550.	0.6	14
107	Different types of whistler mode chorus in the equatorial source region. Geophysical Research Letters, 2015, 42, 8271-8279.	1.5	14
108	Particle energization in space plasmas: towards a multi-point, multi-scale plasma observatory. Experimental Astronomy, 2022, 54, 427-471.	1.6	14

#	Article	IF	CITATIONS
109	Multi-spacecraft investigation of space turbulence: Lessons from Cluster and input to the Cross-Scale mission. Planetary and Space Science, 2011, 59, 585-591.	0.9	13
110	Statistical Study of the Properties of Magnetosheath Lion Roars. Journal of Geophysical Research: Space Physics, 2018, 123, 5435-5451.	0.8	13
111	Upperâ€Hybrid Waves Driven by Meandering Electrons Around Magnetic Reconnection X Line. Geophysical Research Letters, 2021, 48, e2021GL093164.	1.5	13
112	Compressible Kelvin-Helmholtz instability in supermagnetosonic regimes. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	12
113	Coupling Between Whistler Waves and Ion-Scale Solitary Waves: Cluster Measurements in the Magnetotail During a Substorm. Physical Review Letters, 2012, 109, 155005.	2.9	12
114	"Zipperâ€like―periodic magnetosonic waves: Van Allen Probes, THEMIS, and magnetospheric multiscale observations. Journal of Geophysical Research: Space Physics, 2017, 122, 1600-1610.	0.8	12
115	Magnetic depression and electron transport in an ion-scale flux rope associated with Kelvin–Helmholtz waves. Annales Geophysicae, 2018, 36, 879-889.	0.6	12
116	Observations of Electromagnetic Electron Holes and Evidence of Cherenkov Whistler Emission. Physical Review Letters, 2019, 123, 255101.	2.9	12
117	Observations of the Source Region of Whistler Mode Waves in Magnetosheath Mirror Structures. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027488.	0.8	12
118	Source location of falling tone chorus. Geophysical Research Letters, 2012, 39, .	1.5	11
119	Electron and wave characteristics observed by the THEMIS satellites near the magnetic equator during a pulsating aurora. Journal of Geophysical Research, 2012, 117, .	3.3	11
120	In situ spacecraft observations of a structured electron diffusion region during magnetopause reconnection. Physical Review E, 2019, 99, 043204.	0.8	11
121	Energy Conversion and Electron Acceleration in the Magnetopause Reconnection Diffusion Region. Geophysical Research Letters, 2019, 46, 10274-10282.	1.5	10
122	Sign Singularity of the Local Energy Transfer in Space Plasma Turbulence. Frontiers in Physics, 2019, 7,	1.0	9
123	Characteristics of Resonant Electrons Interacting With Whistler Waves in the Nearest Dipolarizing Magnetotail. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029440.	0.8	9
124	Statistical Characteristics in the Spectrum of Whistler Waves Near the Diffusion Region of Dayside Magnetopause Reconnection. Geophysical Research Letters, 2021, 48, .	1.5	9
125	On the origin of falling-tone chorus elements in Earth's inner magnetosphere. Annales Geophysicae, 2014, 32, 1477-1485.	0.6	9
126	A mechanism for heating electrons in the magnetopause current layer and adjacent regions. Annales Geophysicae, 2011, 29, 2305-2316.	0.6	8

8

#	Article	IF	CITATIONS
127	Measurements of Magnetic Field Fluctuations for Plasma Wave Investigation by the Search Coil Magnetometers (SCM) Onboard Bepicolombo Mio (Mercury Magnetospheric Orbiter). Space Science Reviews, 2020, 216, 1.	3.7	8
128	Observations of Shortâ€Period Ion‣cale Current Sheet Flapping. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029152.	0.8	8
129	Thin Current Sheet Behind the Dipolarization Front. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029518.	0.8	8
130	Coupling between whistler waves and slow-mode solitary waves. Physics of Plasmas, 2012, 19, 052103.	0.7	7
131	Four‧pacecraft Measurements of the Shape and Dimensionality of Magnetic Structures in the Nearâ€Earth Plasma Environment. Journal of Geophysical Research: Space Physics, 2019, 124, 6850-6868.	0.8	7
132	Cross‣cale Quantification of Stormâ€Time Dayside Magnetospheric Magnetic Flux Content. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028027.	0.8	7
133	Observation of an inertial-range energy cascade within a reconnection jet in the Earth's magnetotail. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 500, L6-L10.	1.2	7
134	Twoâ€Dimensional Velocity of the Magnetic Structure Observed on July 11, 2017 by the Magnetospheric Multiscale Spacecraft. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028705.	0.8	7
135	Low-frequency Whistler Waves Modulate Electrons and Generate Higher-frequency Whistler Waves in the Solar Wind. Astrophysical Journal, 2021, 923, 216.	1.6	7
136	Simultaneous FAST and Double Star TC1 observations of broadband electrons during a storm time substorm. Journal of Geophysical Research, 2010, 115, .	3.3	6
137	Magnetic Reconnection in Three Dimensions: Observations of Electromagnetic Drift Waves in the Adjacent Current Sheet. Journal of Geophysical Research: Space Physics, 2019, 124, 10104-10118.	0.8	6
138	Whistler and Broadband Electrostatic Waves in the Multiple Xâ€Line Reconnection at the Magnetopause. Geophysical Research Letters, 2021, 48, e2020GL091320.	1.5	6
139	Kinetic Interaction of Cold and Hot Protons With an Oblique EMIC Wave Near the Dayside Reconnecting Magnetopause. Geophysical Research Letters, 2021, 48, e2021GL092376.	1.5	6
140	Direct Multipoint Observations Capturing the Reformation of a Supercritical Fast Magnetosonic Shock. Astrophysical Journal Letters, 2021, 911, L31.	3.0	6
141	Investigation of the homogeneity of energy conversion processes at dipolarization fronts from MMS measurements. Physics of Plasmas, 2022, 29, .	0.7	5
142	Electronâ€Scale Magnetic Structure Observed Adjacent to an Electron Diffusion Region at the Dayside Magnetopause. Journal of Geophysical Research: Space Physics, 2019, 124, 10153-10169.	0.8	4
143	MMS Observations of Reconnection at Dayside Magnetopause Crossings During Transitions of the Solar Wind to Subâ€Alfvénic Flow. Journal of Geophysical Research: Space Physics, 2017, 122, 9934-9951.	0.8	3
144	Evidence for Whistler Waves Propagating Into the Electron Diffusion Region of Collisionless Magnetic Reconnection. Geophysical Research Letters, 2022, 49, .	1.5	3

#	Article	IF	CITATIONS
145	The role of the magnetosonic Mach number on the evolution of Kelvin-Helmholtz vortices. EAS Publications Series, 2012, 58, 91-94.	0.3	2
146	Magnetospheric MultiscaleÂObservations of the Off-equatorial Dipolarization Front Dynamics in the Terrestrial Magnetotail. Astrophysical Journal, 2020, 899, 125.	1.6	1
147	The Impact of Radial and Nonâ€Radial IMF on the Earth's Magnetopause Size, Shape, and Dawnâ€Đusk Asymmetry From Global 3D Kinetic Simulations. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029528.	0.8	0