Manuela Almeida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8480351/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Overview and future challenges of nearly zero energy buildings (nZEB) design in Southern Europe. Energy and Buildings, 2017, 155, 439-458.	6.7	235
2	Defects and moisture problems in buildings from historical city centres: a case study in Portugal. Building and Environment, 2006, 41, 223-234.	6.9	85
3	Cost effective energy and carbon emissions optimization in building renovation (Annex 56). Energy and Buildings, 2017, 152, 718-738.	6.7	64
4	Comparing cost-optimal and net-zero energy targets in building retrofit. Building Research and Information, 2016, 44, 188-201.	3.9	63
5	Oxidative Stress in Kidney Transplantation. Transplantation, 2014, 97, 1058-1065.	1.0	56
6	Review and perspectives on Life Cycle Analysis of solar technologies with emphasis on building-integrated solar thermal systems. Renewable Energy, 2015, 75, 833-846.	8.9	56
7	Development of prefabricated retrofit module towards nearly zero energy buildings. Energy and Buildings, 2013, 56, 115-125.	6.7	54
8	Cost-optimal energy efficiency levels are the first step in achieving cost effective renovation in residential buildings with a nearly-zero energy target. Energy and Buildings, 2016, 133, 724-737.	6.7	54
9	Impact of co-benefits on the assessment of energy related building renovation with a nearly-zero energy target. Energy and Buildings, 2017, 152, 587-601.	6.7	49
10	Benefits from Energy Related Building Renovation Beyond Costs, Energy and Emissions. Energy Procedia, 2015, 78, 2397-2402.	1.8	48
11	Contribution of the solar systems to the nZEB and ZEB design concept in Portugal – Energy, economics and environmental life cycle analysis. Solar Energy Materials and Solar Cells, 2016, 156, 59-74.	6.2	38
12	Ten questions concerning cost-effective energy and carbon emissions optimization in building renovation. Building and Environment, 2018, 143, 15-23.	6.9	35
13	Environmental and cost life cycle analysis of the impact of using solar systems in energy renovation of Southern European single-family buildings. Renewable Energy, 2019, 137, 82-92.	8.9	35
14	BIM-Based Energy Analysis and Sustainability Assessment—Application to Portuguese Buildings. Buildings, 2021, 11, 246.	3.1	35
15	Integrated energy design – Education and training in cross-disciplinary teams implementing energy performance of buildings directive (EPBD). Building and Environment, 2014, 72, 1-14.	6.9	33
16	Cost–benefit analysis method for building solutions. Applied Energy, 2016, 173, 124-133.	10.1	32
17	Tools and procedures to support decision making for cost-effective energy and carbon emissions optimization in building renovation. Energy and Buildings, 2018, 167, 200-215.	6.7	30
18	Relevance of Embodied Energy and Carbon Emissions on Assessing Cost Effectiveness in Building Renovation—Contribution from the Analysis of Case Studies in Six European Countries. Buildings, 2018, 8, 103.	3.1	29

Manuela Almeida

#	Article	IF	CITATIONS
19	School building experimental characterization in Mediterranean climate regarding comfort, indoor air quality and energy consumption. Energy and Buildings, 2020, 212, 109782.	6.7	28
20	Analysis of some Portuguese thermal regulation parameters. Energy and Buildings, 2013, 58, 141-150.	6.7	27
21	Thermal, luminous and energy performance of solar control films in single-glazed windows: Use of energy performance criteria to support decision making. Energy and Buildings, 2019, 198, 431-443.	6.7	27
22	Environmental Comfort Indicators for School Buildings in Sustainability Assessment Tools. Sustainability, 2018, 10, 1849.	3.2	26
23	Challenges and benefits of building sustainable cooperative housing. Building and Environment, 2013, 62, 9-17.	6.9	22
24	Building renovation at district level – Lessons learned from international case studies. Sustainable Cities and Society, 2021, 72, 103037.	10.4	22
25	Shining examples analysed within the EBC Annex 56 project. Energy and Buildings, 2016, 127, 991-998.	6.7	17
26	Developing the methodology for determining the relative weight of dimensions employed in sustainable building assessment tools for Brazil. Ecological Indicators, 2017, 73, 46-51.	6.3	17
27	Ecological Design of New Efficient Energy-Performance Construction Materials with Rigid Polyurethane Foam Waste. Polymers, 2020, 12, 1048.	4.5	16
28	A triple-biomarker approach for the detection of delayed graft function after kidney transplantation using serum creatinine, cystatin C, and malondialdehyde. Clinical Biochemistry, 2015, 48, 1033-1038.	1.9	15
29	IEA EBC Annex56 Vision for Cost Effective Energy and Carbon Emissions Optimization in Building Renovation. Energy Procedia, 2015, 78, 2409-2414.	1.8	14
30	Cost-effective Energy and Carbon Emission Optimization in Building Renovation – A Case-Study in a Low Income Neighbourhood. Energy Procedia, 2015, 78, 2403-2408.	1.8	14
31	Effect of Embodied Energy on Cost-Effectiveness of a Prefabricated Modular Solution on Renovation Scenarios in Social Housing in Porto, Portugal. Sustainability, 2020, 12, 1631.	3.2	13
32	Research on the Portuguese Building Stock and Its Impacts on Energy Consumption – An Average U-Value Approach. Archives of Civil Engineering, 2013, 59, 523-546.	0.7	13
33	Glazing daylighting performance and Trombe wall thermal performance of a modular façade system in four different Portuguese cities. Indoor and Built Environment, 2015, 24, 544-563.	2.8	12
34	Study of Natural Ventilation in wind Tunnels and Influence of the Position of Ventilation Modules and Types of Grids on a Modular Façade System. Energy Procedia, 2016, 96, 953-964.	1.8	12
35	Cost optimality and net-zero energy in the renovation of Portuguese residential building stock – Rainha Dona Leonor neighbourhood case study. International Journal of Sustainable Building Technology and Urban Development, 2014, 5, 306-317.	1.0	10
36	Operative Conditions Evaluation for Efficient Building Retrofit—A Case Study. Indoor and Built Environment, 2013, 22, 724-742.	2.8	9

Manuela Almeida

#	Article	IF	CITATIONS
37	The Inclusion of a Sustainability Awareness Indicator in Assessment Tools for High School Buildings. Sustainability, 2019, 11, 387.	3.2	9
38	Life-cycle costs and impacts on energy-related building renovation assessments. International Journal of Sustainable Building Technology and Urban Development, 2016, 7, 206-213.	1.0	8
39	Adaptation of the SBTool for Sustainability Assessment of High School Buildings in Portugal—SAHSBPT. Applied Sciences (Switzerland), 2019, 9, 2664.	2.5	8
40	Environmental Performance of a Cost-Effective Energy Renovation at the Neighbourhood Scale—The Case for Social Housing in Braga, Portugal. Sustainability, 2022, 14, 1947.	3.2	7
41	Spectrophotometric Characterization of Simple Glazings for a Modular Façade. Energy Procedia, 2016, 96, 965-972.	1.8	6
42	Comparative Study of Comfort Indicators for School Constructions in Sustainability Methodologies: Schools in the Amazon and the Southeast Region of Brazil. Sustainability, 2019, 11, 5216.	3.2	6
43	Fachadas con muro Trombe y doble acristalamiento: E! ciencia energética para diferentes climas Portugueses. Informes De La Construccion, 2013, 65, 11-22.	0.3	5
44	Shining Examples Analysed within the EBC Annex 56 Project. Energy Procedia, 2015, 78, 2334-2339.	1.8	4
45	Verification of the Adequacy of the Portuguese Sustainability Assessment Tool of High School Buildings, SAHSBPT, to the Francisco de Holanda High School, Guimarães. Sustainability, 2019, 11, 4559.	3.2	4
46	Thermal Performance and Comfort Conditions Analysis of a Vernacular Palafitic Timber Building in Portuguese Coastline Context. Sustainability, 2020, 12, 10484.	3.2	4
47	Specification of Glazings for Façades Based on Spectrophotometric Characterization of Transmittance. Sustainability, 2021, 13, 5437.	3.2	4
48	Impact of atmospherical stability and intra-hour variation of meteorological data in the variability of building air change rates. Building and Environment, 2022, 207, 108528.	6.9	3
49	Achieving Cost Benefits in Sustainable Cooperative Housing. Buildings, 2013, 3, 1-17.	3.1	2
50	Performance evaluation of non-conventional constructions: Case study in a temperate climate. Applied Thermal Engineering, 2012, 42, 136-144.	6.0	1
51	Effect of environmental assessment on primary energy of modular prefabricated panel for building renovation in Portugal. IOP Conference Series: Earth and Environmental Science, 2019, 225, 012047.	0.3	1
52	Cost efficiency of retrofit measures for typical masonry houses in Kosovo. International Review of Applied Sciences and Engineering, 2019, 10, 87-91.	0.4	1
53	Different Module Placements in a Modular Façade System for Natural Ventilation. Procedia Economics and Finance, 2015, 21, 366-373.	0.6	0