List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/848016/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biodegradable Polymer with Effective Nearâ€Infraredâ€II Absorption as a Photothermal Agent for Deep Tumor Therapy. Advanced Materials, 2022, 34, e2105976.	11.1	92
2	Biosafety chemistry and biosafety materials: A new perspective to solve biosafety problems. Biosafety and Health, 2022, 4, 15-22.	1.2	18
3	Targeting Cancer Metabolism Plasticity with JX06 Nanoparticles via Inhibiting PDK1 Combined with Metformin for Endometrial Cancer Patients with Diabetes. Advanced Science, 2022, 9, e2104472.	5.6	14
4	Degradable Pseudo Conjugated Polymer Nanoparticles with NIRâ€II Photothermal Effect and Cationic Quaternary Phosphonium Structural Bacteriostasis for Antiâ€Infection Therapy. Advanced Science, 2022, 9, e2200732.	5.6	46
5	Photoâ€Reduction with NIR Light of Nucleusâ€Targeting Pt ^{IV} Nanoparticles for Combined Tumorâ€Targeted Chemotherapy and Photodynamic Immunotherapy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	93
6	Advanced biosafety materials for prevention and theranostics of biosafety issues. Biosafety and Health, 2022, 4, 59-60.	1.2	31
7	Biosafety materials: Ushering in a new era of infectious disease diagnosis and treatment with the CRISPR/Cas system. Biosafety and Health, 2022, 4, 70-78.	1.2	10
8	Biomedical polymers: synthesis, properties, and applications. Science China Chemistry, 2022, 65, 1010-1075.	4.2	85
9	Restoration of the Immunogenicity of Tumor Cells for Enhanced Cancer Therapy via Nanoparticleâ€Mediated Copper Chaperone Inhibition. Angewandte Chemie - International Edition, 2022, 61, .	7.2	30
10	Selfâ€Sacrificially Degradable Pseudoâ€Semiconducting Polymer Nanoparticles that Integrate NIRâ€II Fluorescence Bioimaging, Photodynamic Immunotherapy, and Photoâ€Activated Chemotherapy. Advanced Materials, 2022, 34, .	11.1	65
11	Light-activatable liposomes for repetitive on-demand drug release and immunopotentiation in hypoxic tumor therapy. Biomaterials, 2021, 265, 120456.	5.7	146
12	The stepwise organization of nanoparticles into a Pickering emulsion. Soft Matter, 2021, 17, 1796-1801.	1.2	1
13	Nanoparticle-based drug delivery systems with platinum drugs for overcoming cancer drug resistance. Journal of Materials Chemistry B, 2021, 9, 5173-5194.	2.9	42
14	UCNP@BSA@Ru nanoparticles with tumor-specific and NIR-triggered efficient PACT activity <i>in vivo</i> . Dalton Transactions, 2021, 50, 7715-7724.	1.6	7
15	Core Role of Hydrophobic Core of Polymeric Nanomicelle in Endosomal Escape of siRNA. Nano Letters, 2021, 21, 3680-3689.	4.5	58
16	Exploiting the acquired vulnerability of cisplatin-resistant tumors with a hypoxia-amplifying DNA repair–inhibiting (HYDRI) nanomedicine. Science Advances, 2021, 7, .	4.7	50
17	A Near-Infrared-II Polymer with Tandem Fluorophores Demonstrates Superior Biodegradability for Simultaneous Drug Tracking and Treatment Efficacy Feedback. ACS Nano, 2021, 15, 5428-5438.	7.3	79
18	A Systematic Strategy of Combinational Blow for Overcoming Cascade Drug Resistance via NIRâ€Lightâ€Triggered Hyperthermia. Advanced Materials, 2021, 33, e2100599.	11.1	78

#	Article	IF	CITATIONS
19	Photothermal Therapy via NIR II Light Irradiation Enhances DNA Damage and Endoplasmic Reticulum Stress for Efficient Chemotherapy. Frontiers in Pharmacology, 2021, 12, 670207.	1.6	9
20	Nanoparticle-mediated convection-enhanced delivery of a DNA intercalator to gliomas circumvents temozolomide resistance. Nature Biomedical Engineering, 2021, 5, 1048-1058.	11.6	96
21	Identification of SARS-CoV-2-against aptamer with high neutralization activity by blocking the RBD domain of spike protein 1. Signal Transduction and Targeted Therapy, 2021, 6, 227.	7.1	56
22	Photosensitizer with High Efficiency Generated in Cells via Lightâ€Induced Selfâ€Oligomerization of 4,6â€Dibromothieno[3,4â€ <i>b</i>]thiophene Compound Entailing a Triphenyl Phosphonium Group. Advanced Healthcare Materials, 2021, 10, e2100896.	3.9	3
23	Metabolizable pH/H2O2 dual-responsive conductive polymer nanoparticles for safe and precise chemo-photothermal therapy. Biomaterials, 2021, 277, 121115.	5.7	15
24	Genome-wide analysis identify novel germline genetic variations in ADCY1 influencing platinum-based chemotherapy response in non-small cell lung cancer. Acta Pharmaceutica Sinica B, 2021, 12, 1514-1522.	5.7	2
25	Enhanced Chemodynamic Therapy and Chemotherapy via Delivery of a Dual Threat ArtePt and Iodoâ€Click Reaction Mediated Glutathione Consumption. Small Methods, 2021, 5, e2101047.	4.6	15
26	Near-Infrared Light Irradiation Induced Mild Hyperthermia Enhances Glutathione Depletion and DNA Interstrand Cross-Link Formation for Efficient Chemotherapy. ACS Nano, 2020, 14, 14831-14845.	7.3	67
27	Clustered nanobody–drug conjugates for targeted cancer therapy. Chemical Communications, 2020, 56, 9344-9347.	2.2	17
28	Efficient hepatic delivery and protein expression enabled by optimized mRNA and ionizable lipid nanoparticle. Bioactive Materials, 2020, 5, 1053-1061.	8.6	49
29	Illuminating Platinum Transportation while Maximizing Therapeutic Efficacy by Gold Nanoclusters <i>via</i> Simultaneous Near-Infrared-I/II Imaging and Glutathione Scavenging. ACS Nano, 2020, 14, 13536-13547.	7.3	181
30	Breaking the Intracellular Redox Balance with Diselenium Nanoparticles for Maximizing Chemotherapy Efficacy on Patient-Derived Xenograft Models. ACS Nano, 2020, 14, 16984-16996.	7.3	105
31	Biosafety materials: an emerging new research direction of materials science from the COVID-19 outbreak. Materials Chemistry Frontiers, 2020, 4, 1930-1953.	3.2	55
32	Bactericidal and antifouling electrospun PVA nanofibers modified with a quaternary ammonium salt and zwitterionic sulfopropylbetaine. Materials Science and Engineering C, 2020, 111, 110855.	3.8	36
33	The challenge and prospect of mRNA therapeutics landscape. Biotechnology Advances, 2020, 40, 107534.	6.0	221
34	Enhancing the chemotherapeutic efficacy of platinum prodrug nanoparticles and inhibiting cancer metastasis by targeting iron homeostasis. Nanoscale Horizons, 2020, 5, 999-1015.	4.1	25
35	A Nanobody onjugated DNA Nanoplatform for Targeted Platinumâ€Drug Delivery. Angewandte Chemie, 2019, 131, 14362-14366.	1.6	21
36	A Nanobodyâ€Conjugated DNA Nanoplatform for Targeted Platinumâ€Drug Delivery. Angewandte Chemie - International Edition, 2019, 58, 14224-14228.	7.2	135

#	Article	IF	CITATIONS
37	pH/redox sensitive nanoparticles with platinum(iv) prodrugs and doxorubicin enhance chemotherapy in ovarian cancer. RSC Advances, 2019, 9, 20513-20517.	1.7	14
38	Cancer Cell Membraneâ€Coated Nanoparticles for Personalized Therapy in Patientâ€Derived Xenograft Models. Advanced Functional Materials, 2019, 29, 1905671.	7.8	125
39	Design of zwitterionic polyester based nano-carriers for platinum(iv) prodrug delivery. Polymer Chemistry, 2019, 10, 5353-5363.	1.9	9
40	A spermine-conjugated lipophilic Pt(<scp>iv</scp>) prodrug designed to eliminate cancer stem cells in ovarian cancer. Chemical Communications, 2019, 55, 6106-6109.	2.2	20
41	RNAi therapeutic and its innovative biotechnological evolution. Biotechnology Advances, 2019, 37, 801-825.	6.0	196
42	A negatively charged Pt(<scp>iv</scp>) prodrug for electrostatic complexation with polymers to overcome cisplatin resistance. Journal of Materials Chemistry B, 2019, 7, 3346-3350.	2.9	27
43	Evaluation of Polymer Nanoformulations in Hepatoma Therapy by Established Rodent Models. Theranostics, 2019, 9, 1426-1452.	4.6	53
44	Secreted Protein Acidic and Rich in Cysteine Mediated Biomimetic Delivery of Methotrexate by Albumin-Based Nanomedicines for Rheumatoid Arthritis Therapy. ACS Nano, 2019, 13, 5036-5048.	7.3	122
45	Dual Drug Backboned Shattering Polymeric Theranostic Nanomedicine for Synergistic Eradication of Patientâ€Derived Lung Cancer. Advanced Materials, 2018, 30, 1706220.	11.1	142
46	Fluorinated Acidâ€Labile Branched Hydroxylâ€Rich Nanosystems for Flexible and Robust Delivery of Plasmids. Small, 2018, 14, e1803061.	5.2	61
47	Sandwichâ€Like Fibers/Sponge Composite Combining Chemotherapy and Hemostasis for Efficient Postoperative Prevention of Tumor Recurrence and Metastasis. Advanced Materials, 2018, 30, e1803217.	11.1	129
48	Tailoring Platinum(IV) Amphiphiles for Self-Targeting All-in-One Assemblies as Precise Multimodal Theranostic Nanomedicine. ACS Nano, 2018, 12, 7272-7281.	7.3	114
49	A Targeted and Stable Polymeric Nanoformulation Enhances Systemic Delivery of mRNA to Tumors. Molecular Therapy, 2017, 25, 92-101.	3.7	70
50	Enhanced Cisplatin Chemotherapy by Iron Oxide Nanocarrier-Mediated Generation of Highly Toxic Reactive Oxygen Species. Nano Letters, 2017, 17, 928-937.	4.5	548
51	Maximizing Synergistic Activity When Combining RNAi and Platinum-Based Anticancer Agents. Journal of the American Chemical Society, 2017, 139, 3033-3044.	6.6	74
52	Receptor and Microenvironment Dual-Recognizable Nanogel for Targeted Chemotherapy of Highly Metastatic Malignancy. Nano Letters, 2017, 17, 4526-4533.	4.5	127
53	Polymeric Nanostructure Compiled with Multifunctional Components To Exert Tumor-Targeted Delivery of Antiangiogenic Gene for Tumor Growth Suppression. ACS Applied Materials & Interfaces, 2016, 8, 24404-24414.	4.0	7
54	Biodegradable polymer–platinum drug conjugates to overcome platinum drug resistance. RSC Advances, 2015, 5, 83343-83349.	1.7	18

#	Article	IF	CITATIONS
55	Nanoparticle delivery of photosensitive Pt(IV) drugs for circumventing cisplatin cellular pathway and on-demand drug release. Colloids and Surfaces B: Biointerfaces, 2014, 123, 734-741.	2.5	32
56	Nanoparticle mediated delivery of a GST inhibitor ethacrynic acid for sensitizing platinum based chemotherapy. RSC Advances, 2014, 4, 61124-61132.	1.7	17
57	Application of microwaveâ€assisted click chemistry in the preparation of functionalized copolymers for drug conjugation. Journal of Applied Polymer Science, 2013, 127, 3365-3373.	1.3	20
58	Iodo-BODIPY: a visible-light-driven, highly efficient and photostable metal-free organic photocatalyst. RSC Advances, 2013, 3, 13417.	1.7	99
59	Co-delivery of all-trans-retinoic-acid and cisplatin(iv) prodrug based on polymer–drug conjugates for enhanced efficacy and safety. Journal of Materials Chemistry, 2012, 22, 25453.	6.7	15
60	A dual-targeting hybrid platinum(iv) prodrug for enhancing efficacy. Chemical Communications, 2012, 48, 10730.	2.2	70
61	Co-delivery of daunomycin and oxaliplatin by biodegradable polymers for safer and more efficacious combination therapy. Journal of Controlled Release, 2012, 163, 304-314.	4.8	110
62	The use of polymeric platinum(IV) prodrugs to deliver multinuclear platinum(II) drugs with reduced systemic toxicity and enhanced antitumor efficacy. Biomaterials, 2012, 33, 8657-8669.	5.7	77
63	Guanidinated amphiphilic cationic copolymer with enhanced gene delivery efficiency. Journal of Materials Chemistry, 2012, 22, 18915.	6.7	19
64	A complex of cyclohexane-1,2-diaminoplatinum with an amphiphilic biodegradable polymer with pendant carboxyl groups. Acta Biomaterialia, 2012, 8, 1859-1868.	4.1	34
65	A prodrug strategy to deliver cisplatin(IV) and paclitaxel in nanomicelles to improve efficacy and tolerance. Biomaterials, 2012, 33, 6507-6519.	5.7	182
66	Delivery of Active DACHâ€₽t Anticancer Species by Biodegradable Amphiphilic Polymers Using Thiolâ€Ene Radical Addition. Macromolecular Bioscience, 2012, 12, 367-373.	2.1	16
67	New polymer–platinum (II) antitumor conjugates. Journal of Controlled Release, 2011, 152, e103-e104.	4.8	3
68	Biodegradable polymerÂâ^' cisplatin(IV) conjugate as a pro-drug of cisplatin(II). Biomaterials, 2011, 32, 7732-7739.	5.7	179
69	Zincâ€based catalyst for the ringâ€opening polymerization of cyclic esters. Journal of Applied Polymer Science, 2011, 121, 2378-2385.	1.3	10
70	Photoâ€Reduktion mit NIRâ€Licht von Zellkern akkumulierenden Pt ^{IV} â€Nanopartikeln für eine kombinierte Tumor ausgerichtete Chemotherapie und Photodynamische Immuntherapie. Angewandte Chemie, 0, , .	1.6	4
71	Restoration of the Immunogenicity of Tumor Cells for Enhanced Cancer Therapy via Nanoparticleâ€Mediated Copper Chaperone Inhibition. Angewandte Chemie, 0, , .	1.6	2