Sarkis K Mazmanian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8480111/publications.pdf

Version: 2024-02-01

91 papers

47,538 citations

9254 74 h-index 93 g-index

99 all docs 99 docs citations 99 times ranked 45737 citing authors

#	Article	IF	Citations
1	The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology, 2009, 9, 313-323.	10.6	3,946
2	Microbiota Modulate Behavioral and Physiological Abnormalities Associated with Neurodevelopmental Disorders. Cell, 2013, 155, 1451-1463.	13.5	2,596
3	An Immunomodulatory Molecule of Symbiotic Bacteria Directs Maturation of the Host Immune System. Cell, 2005, 122, 107-118.	13.5	2,427
4	Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis. Cell, 2015, 161, 264-276.	13.5	2,423
5	Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson's Disease. Cell, 2016, 167, 1469-1480.e12.	13.5	2,399
6	Animals in a bacterial world, a new imperative for the life sciences. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3229-3236.	3.3	2,181
7	A microbial symbiosis factor prevents intestinal inflammatory disease. Nature, 2008, 453, 620-625.	13.7	2,094
8	Inducible Foxp3 ⁺ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12204-12209.	3.3	1,899
9	Gut biogeography of the bacterial microbiota. Nature Reviews Microbiology, 2016, 14, 20-32.	13.6	1,772
10	The Toll-Like Receptor 2 Pathway Establishes Colonization by a Commensal of the Human Microbiota. Science, 2011, 332, 974-977.	6.0	1,354
11	Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4615-4622.	3.3	1,110
12	The Central Nervous System and the Gut Microbiome. Cell, 2016, 167, 915-932.	13.5	985
13	Has the Microbiota Played a Critical Role in the Evolution of the Adaptive Immune System?. Science, 2010, 330, 1768-1773.	6.0	956
14	Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nature Neuroscience, 2017, 20, 1172-1179.	7.1	927
15	Staphylococcus aureus Sortase, an Enzyme that Anchors Surface Proteins to the Cell Wall. Science, 1999, 285, 760-763.	6.0	923
16	The gut microbiota–brain axis in behaviour and brain disorders. Nature Reviews Microbiology, 2021, 19, 241-255.	13.6	864
17	Communicable Ulcerative Colitis Induced by T-bet Deficiency in the Innate Immune System. Cell, 2007, 131, 33-45.	13.5	837
18	Control of Brain Development, Function, and Behavior by the Microbiome. Cell Host and Microbe, 2015, 17, 565-576.	5.1	815

#	Article	IF	CITATIONS
19	Gut Microbes and the Brain: Paradigm Shift in Neuroscience. Journal of Neuroscience, 2014, 34, 15490-15496.	1.7	719
20	Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10713-10718.	3.3	709
21	Human Gut Microbiota from Autism Spectrum Disorder Promote Behavioral Symptoms in Mice. Cell, 2019, 177, 1600-1618.e17.	13.5	701
22	Commensal bacteria protect against food allergen sensitization. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13145-13150.	3.3	632
23	Passage of Heme-Iron Across the Envelope of Staphylococcus aureus. Science, 2003, 299, 906-909.	6.0	544
24	Outer Membrane Vesicles of a Human Commensal Mediate Immune Regulation and Disease Protection. Cell Host and Microbe, 2012, 12, 509-520.	5.1	531
25	Bacterial colonization factors control specificity and stability of the gut microbiota. Nature, 2013, 501, 426-429.	13.7	530
26	Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 12424-12429.	3.3	521
27	Gut Microbiota Promote Hematopoiesis to Control Bacterial Infection. Cell Host and Microbe, 2014, 15, 374-381.	5.1	501
28	Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science, 2016, 352, 1116-1120.	6.0	498
29	Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nature Immunology, 2013, 14, 668-675.	7.0	481
30	Specialized Metabolites from the Microbiome in Health and Disease. Cell Metabolism, 2014, 20, 719-730.	7.2	454
31	Gut microbiota utilize immunoglobulin A for mucosal colonization. Science, 2018, 360, 795-800.	6.0	447
32	Staphylococcus aureus sortase mutants defective in the display of surface proteins and in the pathogenesis of animal infections. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 5510-5515.	3.3	413
33	A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis. Journal of Allergy and Clinical Immunology, 2013, 131, 201-212.	1.5	381
34	Pathobionts of the gastrointestinal microbiota and inflammatory disease. Current Opinion in Immunology, 2011, 23, 473-480.	2.4	362
35	Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Molecular Microbiology, 2001, 40, 1049-1057.	1.2	343
36	The Enteric Network: Interactions between the Immune and Nervous Systems of the Gut. Immunity, 2017, 46, 910-926.	6.6	342

#	Article	IF	CITATIONS
37	An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2293-2298.	3.3	338
38	Host–Bacterial Symbiosis in Health and Disease. Advances in Immunology, 2010, 107, 243-274.	1.1	335
39	Protecting the Newborn and Young Infant from Infectious Diseases: Lessons from Immune Ontogeny. Immunity, 2017, 46, 350-363.	6.6	326
40	Global chemical effects of the microbiome include new bile-acid conjugations. Nature, 2020, 579, 123-129.	13.7	316
41	Modeling an autism risk factor in mice leads to permanent immune dysregulation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12776-12781.	3.3	307
42	The love–hate relationship between bacterial polysaccharides and the host immune system. Nature Reviews Immunology, 2006, 6, 849-858.	10.6	297
43	Microbiome–microglia connections via the gut–brain axis. Journal of Experimental Medicine, 2019, 216, 41-59.	4.2	275
44	A Pathobiont of the Microbiota Balances Host Colonization and Intestinal Inflammation. Cell Host and Microbe, 2010, 7, 265-276.	5.1	266
45	Finding the Missing Links among Metabolites, Microbes, and the Host. Immunity, 2014, 40, 824-832.	6.6	256
46	Anchoring of Surface Proteins to the Cell Wall of Staphylococcus aureus. Journal of Biological Chemistry, 2000, 275, 9876-9881.	1.6	254
47	A gut bacterial amyloid promotes $\hat{l}\pm$ -synuclein aggregation and motor impairment in mice. ELife, 2020, 9, .	2.8	251
48	Gut-seeded \hat{l} ±-synuclein fibrils promote gut dysfunction and brain pathology specifically in aged mice. Nature Neuroscience, 2020, 23, 327-336.	7.1	247
49	Coordination of tolerogenic immune responses by the commensal microbiota. Journal of Autoimmunity, 2010, 34, J220-J225.	3.0	232
50	Inactivation of the srtA gene in Listeria monocytogenes inhibits anchoring of surface proteins and affects virulence. Molecular Microbiology, 2002, 43, 869-881.	1.2	214
51	A gut microbial factor modulates locomotor behaviour in Drosophila. Nature, 2018, 563, 402-406.	13.7	199
52	Mapping a multiplexed zoo of mRNA expression. Development (Cambridge), 2016, 143, 3632-3637.	1,2	198
53	Intestinal Microbes Affect Phenotypes and Functions of Invariant Natural Killer T Cells in Mice. Gastroenterology, 2012, 143, 418-428.	0.6	197
54	Anchoring of Surface Proteins to the Cell Wall of Staphylococcus aureus. Journal of Biological Chemistry, 2002, 277, 16241-16248.	1.6	193

#	Article	IF	CITATIONS
55	The placental interleukin-6 signaling controls fetal brain development and behavior. Brain, Behavior, and Immunity, $2017, 62, 11-23$.	2.0	186
56	A gut-derived metabolite alters brain activity and anxiety behaviour in mice. Nature, 2022, 602, 647-653.	13.7	179
57	Bacteroides fragilis polysaccharide A induces IL-10 secreting B and T cells that prevent viral encephalitis. Nature Communications, 2019, 10, 2153.	5.8	178
58	Disruption of the gut microbiome as a risk factor for microbial infections. Current Opinion in Microbiology, 2013, 16, 221-227.	2.3	174
59	Gut microbial molecules in behavioural and neurodegenerative conditions. Nature Reviews Neuroscience, 2020, 21, 717-731.	4.9	167
60	Intestinal Microbes in Inflammatory Bowel Diseases. American Journal of Gastroenterology Supplements (Print), 2012, 1, 15-21.	0.7	165
61	Anchoring of Surface Proteins to the Cell Wall of Staphylococcus aureus. Journal of Biological Chemistry, 2002, 277, 7447-7452.	1.6	143
62	Microbiota regulate social behaviour via stress response neurons in the brain. Nature, 2021, 595, 409-414.	13.7	142
63	Distinct mechanisms define murine B cell lineage immunoglobulin heavy chain (lgH) repertoires. ELife, 2015, 4, e09083.	2.8	134
64	The human commensal Bacteroides fragilis binds intestinal mucin. Anaerobe, 2011, 17, 137-141.	1.0	119
65	Myeloid-Derived Suppressor Cells Are Controlled by Regulatory T Cells via TGF- \hat{l}^2 during Murine Colitis. Cell Reports, 2016, 17, 3219-3232.	2.9	116
66	Diverse Intestinal Bacteria Contain Putative Zwitterionic Capsular Polysaccharides with Anti-inflammatory Properties. Cell Host and Microbe, 2016, 20, 535-547.	5.1	108
67	Plasma and Fecal Metabolite Profiles in Autism Spectrum Disorder. Biological Psychiatry, 2021, 89, 451-462.	0.7	106
68	The role of Staphylococcus aureus sortase A and sortase B in murine arthritis. Microbes and Infection, 2003, 5, 775-780.	1.0	104
69	Regulation of surface architecture by symbiotic bacteria mediates host colonization. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3951-3956.	3.3	101
70	Identification of secreted bacterial proteins by noncanonical amino acid tagging. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 433-438.	3.3	99
71	On the Role ofStaphylococcus aureusSortase and Sortaseâ€Catalyzed Surface Protein Anchoring in Murine Septic Arthritis. Journal of Infectious Diseases, 2002, 185, 1417-1424.	1.9	94
72	The Protective Role of <i>Bacteroides fragilis</i> in a Murine Model of Colitis-Associated Colorectal Cancer. MSphere, 2018, 3, .	1.3	91

#	Article	lF	Citations
73	A Program of Yersinia enterocolitica Type III Secretion Reactions Is Activated by Specific Signals. Journal of Bacteriology, 2001, 183, 4970-4978.	1.0	81
74	The Structure of Sortase B, a Cysteine Transpeptidase that Tethers Surface Protein to the Staphylococcus aureus Cell Wall. Structure, 2004, 12, 105-112.	1.6	79
75	Structures of Sortase B from Staphylococcus aureus and Bacillus anthracis Reveal Catalytic Amino Acid Triad in the Active Site. Structure, 2004, 12, 1147-1156.	1.6	79
76	Interleukin-15 promotes intestinal dysbiosis with butyrate deficiency associated with increased susceptibility to colitis. ISME Journal, 2017, 11, 15-30.	4.4	68
77	Spatially distinct physiology of Bacteroides fragilis within the proximal colon of gnotobiotic mice. Nature Microbiology, 2020, 5, 746-756.	5.9	57
78	The Microbiome Activates CD4 T-cell–mediated Immunity toÂCompensate for Increased Intestinal Permeability. Cellular and Molecular Gastroenterology and Hepatology, 2017, 4, 285-297.	2.3	51
79	Getting the Bugs out of the Immune System: Do Bacterial Microbiota "Fix―Intestinal T Cell Responses?. Cell Host and Microbe, 2009, 5, 8-12.	5.1	50
80	Microbiota–brain axis: Context and causality. Science, 2022, 376, 938-939.	6.0	49
81	Safety and target engagement of an oral small-molecule sequestrant in adolescents with autism spectrum disorder: an open-label phase 1b/2a trial. Nature Medicine, 2022, 28, 528-534.	15.2	45
82	Capsular Polysaccharides of Symbiotic Bacteria Modulate Immune Responses During Experimental Colitis. Journal of Pediatric Gastroenterology and Nutrition, 2008, 46, E11-2.	0.9	42
83	Emerging evidence linking the gut microbiome to neurologic disorders. Genome Medicine, 2018, 10, 98.	3.6	34
84	Gut microbiome-mediated regulation of neuroinflammation. Current Opinion in Immunology, 2022, 76, 102177.	2.4	30
85	Microbial Learning Lessons: SFB Educate the Immune System. Immunity, 2014, 40, 457-459.	6.6	20
86	Interplay between Intestinal Microbiota and Host Immune System. Journal of Bacteriology and Virology, 2014, 44, 1.	0.0	12
87	Gut Immune Balance Is as Easy as S-F-B. Immunity, 2009, 31, 536-538.	6.6	10
88	An embarrassment of sortases – a richness of substrates? Response. Trends in Microbiology, 2001, 9, 101-102.	3.5	9
89	Impaired gut barrier affects microglia health. Nature Neuroscience, 2022, 25, 268-270.	7.1	6
90	Breathe easy: microbes protect from allergies. Nature Medicine, 2012, 18, 492-494.	15.2	4

#	Article	lF	CITATIONS
91	Winning the Microbial Battle, but Not the War. Cell, 2015, 163, 271-272.	13.5	2