Martine J Smit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8480052/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conformational selection guides β-arrestin recruitment at a biased G protein–coupled receptor. Science, 2022, 377, 222-228.	12.6	16
2	G protein-coupled receptors as promising targets in cancer. Current Opinion in Endocrine and Metabolic Research, 2021, 16, 119-127.	1.4	6
3	The CXCL12/CXCR4/ACKR3 Axis in the Tumor Microenvironment: Signaling, Crosstalk, and Therapeutic Targeting. Annual Review of Pharmacology and Toxicology, 2021, 61, 541-563.	9.4	29
4	Differential Involvement of ACKR3 C-Tail in β-Arrestin Recruitment, Trafficking and Internalization. Cells, 2021, 10, 618.	4.1	24
5	Viral G Protein–Coupled Receptors: Attractive Targets for Herpesvirus-Associated Diseases. Pharmacological Reviews, 2021, 73, 828-846.	16.0	15
6	D-dopachrome tautomerase contributes to lung epithelial repair via atypical chemokine receptor 3-dependent Akt signaling. EBioMedicine, 2021, 68, 103412.	6.1	22
7	Sars-Cov-2 Infects an Upper Airway Model Derived from Induced Pluripotent Stem Cells. Stem Cells, 2021, 39, 1310-1321.	3.2	19
8	Selective targeting of ligand-dependent and -independent signaling by GPCR conformation-specific anti-US28 intrabodies. Nature Communications, 2021, 12, 4357.	12.8	18
9	Targeting the latent human cytomegalovirus reservoir for T-cell-mediated killing with virus-specific nanobodies. Nature Communications, 2021, 12, 4436.	12.8	16
10	Pharmacology of Viral GPCRs: All-Round Chemokine Receptor Homologs. , 2021, , .		0
11	The atypical chemokine receptor 3 interacts with Connexin 43 inhibiting astrocytic gap junctional intercellular communication. Nature Communications, 2020, 11, 4855.	12.8	21
12	The Convergence of Extracellular Vesicle and GPCR Biology. Trends in Pharmacological Sciences, 2020, 41, 627-640.	8.7	21
13	Advanced fluorescence microscopy reveals disruption of dynamic CXCR4 dimerization by subpocket-specific inverse agonists. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29144-29154.	7.1	42
14	Kinetic Analysis of the Early Signaling Steps of the Human Chemokine Receptor CXCR4. Molecular Pharmacology, 2020, 98, 72-87.	2.3	13
15	Human Cytomegalovirus-Encoded G Protein-Coupled Receptor UL33 Facilitates Virus Dissemination via the Extracellular and Cell-to-Cell Route. Viruses, 2020, 12, 594.	3.3	8
16	Monitoring Allosteric Interactions with CXCR4 Using NanoBiT Conjugated Nanobodies. Cell Chemical Biology, 2020, 27, 1250-1261.e5.	5.2	21
17	Viral G protein-coupled receptors as modulators of cancer hallmarks. Pharmacological Research, 2020, 156, 104804.	7.1	17
18	The constitutive activity of the viral-encoded G protein-coupled receptor US28 supports a complex signalling network contributing to cancer development. Biochemical Society Transactions, 2020, 48, 1493-1504.	3.4	5

#	Article	IF	CITATIONS
19	The human cytomegalovirus-encoded G protein–coupled receptor UL33 exhibits oncomodulatory properties. Journal of Biological Chemistry, 2019, 294, 16297-16308.	3.4	21
20	From Insight to Modulation of CXCR4 and ACKR3 (CXCR7) Function. Molecular Pharmacology, 2019, 96, 735-736.	2.3	1
21	Antibodies Targeting Chemokine Receptors CXCR4 and ACKR3. Molecular Pharmacology, 2019, 96, 753-764.	2.3	31
22	Nanobodies: New avenues for imaging, stabilizing and modulating GPCRs. Molecular and Cellular Endocrinology, 2019, 484, 15-24.	3.2	50
23	Nanobody-Targeted Photodynamic Therapy Selectively Kills Viral GPCR-Expressing Glioblastoma Cells. Molecular Pharmaceutics, 2019, 16, 3145-3156.	4.6	61
24	CXCR4/ACKR3 Phosphorylation and Recruitment of Interacting Proteins: Key Mechanisms Regulating Their Functional Status. Molecular Pharmacology, 2019, 96, 794-808.	2.3	15
25	Nanobodies detecting and modulating GPCRs outside in and inside out. Current Opinion in Cell Biology, 2019, 57, 115-122.	5.4	41
26	The Role of ACKR3 in Breast, Lung, and Brain Cancer. Molecular Pharmacology, 2019, 96, 819-825.	2.3	25
27	Natural Killer Cell Hypo-responsiveness in Chronic Lymphocytic Leukemia can be Circumvented In Vitro by Adequate Activating Signaling. HemaSphere, 2019, 3, e308.	2.7	14
28	Molecular Pharmacology of a Conformationalâ€ S pecific Extracellular Nanobody Against CXCR4. FASEB Journal, 2019, 33, 668.9.	0.5	2
29	Synthesis and Characterization of a Bidirectional Photoswitchable Antagonist Toolbox for Real-Time GPCR Photopharmacology. Journal of the American Chemical Society, 2018, 140, 4232-4243.	13.7	50
30	Biogenesis and function of extracellular vesicles in cancer. , 2018, 188, 1-11.		549
31	Quantifying exosome secretion from single cells reveals a modulatory role for GPCR signaling. Journal of Cell Biology, 2018, 217, 1129-1142.	5.2	227
32	The constitutive activity of the virally encoded chemokine receptor US28 accelerates glioblastoma growth. Oncogene, 2018, 37, 4110-4121.	5.9	59
33	CXCR4-targeting nanobodies differentially inhibit CXCR4 function and HIV entry. Biochemical Pharmacology, 2018, 158, 402-412.	4.4	34
34	Nanobody-Fc constructs targeting chemokine receptor CXCR4 potently inhibit signaling and CXCR4-mediated HIV-entry and induce antibody effector functions. Biochemical Pharmacology, 2018, 158, 413-424.	4.4	44
35	Heterogeneity assessment of antibody-derived therapeutics at the intact and middle-up level by low-flow sheathless capillary electrophoresis-mass spectrometry. Analytica Chimica Acta, 2018, 1044, 181-190.	5.4	54
36	Structural Analysis of Chemokine Receptor–Ligand Interactions. Journal of Medicinal Chemistry, 2017, 60, 4735-4779.	6.4	94

#	Article	IF	CITATIONS
37	Antibodies targeting G protein-coupled receptors: Recent advances and therapeutic challenges. MAbs, 2017, 9, 735-741.	5.2	19
38	Human Cytomegalovirus-Encoded Receptor US28 Is Expressed in Renal Allografts and Facilitates Viral Spreading In Vitro. Transplantation, 2017, 101, 531-540.	1.0	12
39	CXCR4-Specific Nanobodies as Potential Therapeutics for WHIM syndrome. Journal of Pharmacology and Experimental Therapeutics, 2017, 363, 35-44.	2.5	26
40	Latency-Associated Expression of Human Cytomegalovirus US28 Attenuates Cell Signaling Pathways To Maintain Latent Infection. MBio, 2017, 8, .	4.1	82
41	Molecular Pharmacology of Chemokine Receptors. Methods in Enzymology, 2016, 570, 457-515.	1.0	4
42	Combined CXCR3/CXCR4 measurements are of high prognostic value in chronic lymphocytic leukemia due to negative co-operativity of the receptors. Haematologica, 2016, 101, e99-e102.	3.5	28
43	The viral G protein-coupled receptor ORF74 unmasks phospholipase C signaling of the receptor tyrosine kinase IGF-1R. Cellular Signalling, 2016, 28, 595-605.	3.6	4
44	Human cytomegalovirus encoded chemokine receptor US28 activates the HIF-1α/PKM2 axis in glioblastoma cells. Oncotarget, 2016, 7, 67966-67985.	1.8	49
45	The Viral G Protein-Coupled Receptor ORF74 Hijacks β-Arrestins for Endocytic Trafficking in Response to Human Chemokines. PLoS ONE, 2015, 10, e0124486.	2.5	17
46	The CXCR3-CXCL11 signaling axis mediates macrophage recruitment and dissemination of mycobacterial infection. DMM Disease Models and Mechanisms, 2015, 8, 253-69.	2.4	129
47	At-line coupling of LC–MS to bioaffinity and selectivity assessment for metabolic profiling of ligands towards chemokine receptors CXCR1 and CXCR2. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 1002, 42-53.	2.3	9
48	Modulation of cellular signaling by herpesvirus-encoded G protein-coupled receptors. Frontiers in Pharmacology, 2015, 6, 40.	3.5	43
49	Novel Human Cytomegalovirus Viral Chemokines, vCXCL-1s, Display Functional Selectivity for Neutrophil Signaling and Function. Journal of Immunology, 2015, 195, 227-236.	0.8	27
50	Pharmacological Characterization of [³ H]VUF11211, a Novel Radiolabeled Small-Molecule Inverse Agonist for the Chemokine Receptor CXCR3. Molecular Pharmacology, 2015, 87, 639-648.	2.3	14
51	Exploring the Biology of G Protein–Coupled Receptors from In Vitro to In Vivo. Molecular Pharmacology, 2015, 88, 534-535.	2.3	2
52	Cutting Edge: GPR35/CXCR8 Is the Receptor of the Mucosal Chemokine CXCL17. Journal of Immunology, 2015, 194, 29-33.	0.8	122
53	GPCRâ€TargetÃng NanobodÃes as Attractive Research Tools, Diagnostics and Therapeutics. FASEB Journal, 2015, 29, 486.2.	0.5	0
54	Chemokine Cooperativity Is Caused by Competitive Glycosaminoglycan Binding. Journal of Immunology, 2014, 192, 3908-3914.	0.8	31

#	Article	IF	CITATIONS
55	Identification of Overlapping but Differential Binding Sites for the High-Affinity CXCR3 Antagonists NBI-74330 and VUF11211. Molecular Pharmacology, 2014, 85, 116-126.	2.3	25
56	GPCR-targeting nanobodies: attractive research tools, diagnostics, and therapeutics. Trends in Pharmacological Sciences, 2014, 35, 247-255.	8.7	79
57	Herpesvirus-encoded GPCRs: neglected players in inflammatory and proliferative diseases?. Nature Reviews Drug Discovery, 2014, 13, 123-139.	46.4	76
58	Identification and Characterization of Circulating Variants of CXCL12 from Human Plasma: Effects on Chemotaxis and Mobilization of Hematopoietic Stem and Progenitor Cells. Stem Cells and Development, 2014, 23, 1959-1974.	2.1	32
59	eXamine: Exploring annotated modules in networks. BMC Bioinformatics, 2014, 15, 201.	2.6	16
60	Llama-derived Single Variable Domains (Nanobodies) Directed against Chemokine Receptor CXCR7 Reduce Head and Neck Cancer Cell Growth in Vivo. Journal of Biological Chemistry, 2013, 288, 29562-29572.	3.4	123
61	Neutralizing Nanobodies Targeting Diverse Chemokines Effectively Inhibit Chemokine Function. Journal of Biological Chemistry, 2013, 288, 25173-25182.	3.4	40
62	Multiple Binding Sites for Small-Molecule Antagonists at the CC Chemokine Receptor 2. Molecular Pharmacology, 2013, 84, 551-561.	2.3	48
63	β-Arrestin Recruitment and G Protein Signaling by the Atypical Human Chemokine Decoy Receptor CCX-CKR. Journal of Biological Chemistry, 2013, 288, 7169-7181.	3.4	35
64	Therapeutic targeting of chemokine receptors by small molecules. Drug Discovery Today: Technologies, 2012, 9, e229-e236.	4.0	12
65	Targeting the chemokine receptor system. Drug Discovery Today: Technologies, 2012, 9, e227-e228.	4.0	13
66	Consensus on the role of human cytomegalovirus in glioblastoma. Neuro-Oncology, 2012, 14, 246-255.	1.2	245
67	A Role for the Epidermal Growth Factor Receptor Signaling in Development of Intestinal Serrated Polyps in Mice and Humans. Gastroenterology, 2012, 143, 730-740.	1.3	32
68	Targeting chemokines and chemokine receptors with antibodies. Drug Discovery Today: Technologies, 2012, 9, e237-e244.	4.0	28
69	Synthesis, modeling and functional activity of substituted styrene-amides as small-molecule CXCR7 agonists. European Journal of Medicinal Chemistry, 2012, 51, 184-192.	5.5	54
70	Targeting chemokine receptors in chronic inflammatory diseases: An extensive review. , 2012, 133, 1-18.		112
71	Ubiquitination of CXCR7 Controls Receptor Trafficking. PLoS ONE, 2012, 7, e34192.	2.5	86
72	Constitutive ß-Catenin Signaling by the Viral Chemokine Receptor US28. PLoS ONE, 2012, 7, e48935.	2.5	35

#	Article	IF	CITATIONS
73	Herpesvirus-encoded GPCRs rewire cellular signaling. Molecular and Cellular Endocrinology, 2011, 331, 179-184.	3.2	30
74	Identification of novel allosteric nonpeptidergic inhibitors of the human cytomegalovirus-encoded chemokine receptor US28. Bioorganic and Medicinal Chemistry, 2010, 18, 675-688.	3.0	30
75	The G-protein Coupled Receptor Associated Sorting Protein GASP-1 Regulates the Signalling and Trafficking of the Viral Chemokine Receptor US28. Traffic, 2010, 11, 660-674.	2.7	24
76	The Epstein-Barr Virus-encoded G Protein-coupled Receptor BILF1 Hetero-oligomerizes with Human CXCR4, Scavenges Gαi Proteins, and Constitutively Impairs CXCR4 Functioning. Journal of Biological Chemistry, 2010, 285, 29632-29641.	3.4	85
77	HCMV-Encoded Chemokine Receptor US28 Mediates Proliferative Signaling Through the IL-6–STAT3 Axis. Science Signaling, 2010, 3, ra58.	3.6	187
78	CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20565-20570.	7.1	202
79	The cytomegalovirus-encoded chemokine receptor US28 promotes intestinal neoplasia in transgenic mice. Journal of Clinical Investigation, 2010, 120, 3969-3978.	8.2	96
80	Nonpeptidergic Allosteric Antagonists Differentially Bind to the CXCR2 Chemokine Receptor. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 783-790.	2.5	38
81	Chapter 7 Pharmacological and Biochemical Characterization of Human Cytomegalovirusâ€Encoded G Protein–Coupled Receptors. Methods in Enzymology, 2009, 460, 151-171.	1.0	9
82	Differential Ligand Binding to a Human Cytomegalovirus Chemokine Receptor Determines Cell Type–Specific Motility. PLoS Pathogens, 2009, 5, e1000304.	4.7	59
83	Significance of N-Terminal Proteolysis of CCL14a to Activity on the Chemokine Receptors CCR1 and CCR5 and the Human Cytomegalovirus-Encoded Chemokine Receptor US28. Journal of Immunology, 2009, 183, 1229-1237.	0.8	19
84	The Human Cytomegalovirus–Encoded Chemokine Receptor US28 Promotes Angiogenesis and Tumor Formation via Cyclooxygenase-2. Cancer Research, 2009, 69, 2861-2869.	0.9	139
85	Immunomodulation by herpesvirus U51A chemokine receptor <i>via</i> CCL5 and FOGâ€2 downâ€regulation plus XCR1 and CCR7 mimicry in human leukocytes. European Journal of Immunology, 2008, 38, 763-777.	2.9	37
86	Viral hijacking of human receptors through heterodimerization. Biochemical and Biophysical Research Communications, 2008, 377, 93-97.	2.1	52
87	Noncompetitive Antagonism and Inverse Agonism as Mechanism of Action of Nonpeptidergic Antagonists at Primate and Rodent CXCR3 Chemokine Receptors. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 544-555.	2.5	57
88	Pharmacogenomic and Structural Analysis of Constitutive G Protein–Coupled Receptor Activity. Annual Review of Pharmacology and Toxicology, 2007, 47, 53-87.	9.4	169
89	Synthesis and pharmacological characterization of novel inverse agonists acting on the viral-encoded chemokine receptor US28. Bioorganic and Medicinal Chemistry, 2006, 14, 7213-7230.	3.0	37
90	Chemokine-Directed Trafficking of Receptor Stimulus to Different G Proteins: Selective Inducible and Constitutive Signaling by Human Herpesvirus 6-Encoded Chemokine Receptor U51. Molecular Pharmacology, 2006, 69, 888-898.	2.3	33

#	Article	IF	CITATIONS
91	Human cytomegalovirus-encoded chemokine receptor US28 promotes tumorigenesis. Proceedings of the United States of America, 2006, 103, 13068-13073.	7.1	201
92	Helix 8 of the Viral Chemokine Receptor ORF74 Directs Chemokine Binding. Journal of Biological Chemistry, 2006, 281, 35327-35335.	3.4	26
93	The human cytomegalovirus-encoded chemokine receptor US28 induces caspase-dependent apoptosis. FEBS Journal, 2005, 272, 4163-4177.	4.7	50
94	CC and CX3C Chemokines Differentially Interact with the N Terminus of the Human Cytomegalovirus-encoded US28 Receptor. Journal of Biological Chemistry, 2005, 280, 3275-3285.	3.4	71
95	The Epstein-Barr Virus BILF1 Gene Encodes a G Protein-Coupled Receptor That Inhibits Phosphorylation of RNA-Dependent Protein Kinase. Journal of Virology, 2005, 79, 441-449.	3.4	100
96	Synthesis and Structureâ^'Activity Relationship of the First Nonpeptidergic Inverse Agonists for the Human Cytomegalovirus Encoded Chemokine Receptor US28. Journal of Medicinal Chemistry, 2005, 48, 6461-6471.	6.4	39
97	Constitutively active Gq/11-coupled Receptors Enable Signaling by Co-expressed Gi/o-coupled Receptors. Journal of Biological Chemistry, 2004, 279, 5152-5161.	3.4	52
98	Differential Activation of Murine Herpesvirus 68- and Kaposi's Sarcoma-Associated Herpesvirus-Encoded ORF74 G Protein-Coupled Receptors by Human and Murine Chemokines. Journal of Virology, 2004, 78, 3343-3351.	3.4	46
99	Identification of the First Nonpeptidergic Inverse Agonist for a Constitutively Active Viral-encoded G Protein-coupled Receptor. Journal of Biological Chemistry, 2003, 278, 5172-5178.	3.4	82
100	Human Cytomegalovirus Chemokine Receptor US28-induced Smooth Muscle Cell Migration Is Mediated by Focal Adhesion Kinase and Src. Journal of Biological Chemistry, 2003, 278, 50456-50465.	3.4	90
101	Constitutive Signaling of the Human Cytomegalovirus-encoded Receptor UL33 Differs from That of Its Rat Cytomegalovirus Homolog R33 by Promiscuous Activation of G Proteins of the Gq, Gi, and Gs Classes. Journal of Biological Chemistry, 2003, 278, 50010-50023.	3.4	85
102	The Carboxyl Terminus of Human Cytomegalovirus-encoded 7 Transmembrane Receptor US28 Camouflages Agonism by Mediating Constitutive Endocytosis. Journal of Biological Chemistry, 2003, 278, 19473-19482.	3.4	104
103	CXCR3-mediated chemotaxis of human T cells is regulated by a Gi- and phospholipase C–dependent pathway and not via activation of MEK/p44/p42 MAPK nor Akt/PI-3 kinase. Blood, 2003, 102, 1959-1965.	1.4	161
104	The Rat Cytomegalovirus R33-Encoded G Protein-Coupled Receptor Signals in a Constitutive Fashion. Journal of Virology, 2002, 76, 1328-1338.	3.4	79
105	Kaposi's Sarcoma-Associated Herpesvirus-Encoded G Protein-Coupled Receptor ORF74 Constitutively Activates p44/p42 MAPK and Akt via G i and Phospholipase C-Dependent Signaling Pathways. Journal of Virology, 2002, 76, 1744-1752.	3.4	93
106	G protein-coupled receptors and proliferative signaling. Methods in Enzymology, 2002, 343, 430-447.	1.0	6
107	Constitutive Signaling of the Human Cytomegalovirus-encoded Chemokine Receptor US28. Journal of Biological Chemistry, 2001, 276, 1133-1137.	3.4	222
108	Constitutive Activity and Structural Instability of the Wildâ€Type Human H ₂ Receptor. Journal of Neurochemistry, 1998, 71, 799-807.	3.9	56

#	Article	IF	CITATIONS
109	Modulation of forskolinâ€mediated adenylyl cyclase activation by constitutively active G _s â€coupled receptors. FEBS Letters, 1997, 419, 171-174.	2.8	38