
Zhaohui Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/847928/publications.pdf Version: 2024-02-01

7нлониц Циг

#	Article	IF	CITATIONS
1	Fully resolved simulations of viscoelastic suspensions by an efficient immersed boundary-lattice Boltzmann method. Particuology, 2023, 75, 26-49.	2.0	7
2	A particle-tracking image pyrometer for characterizing ignition of pulverized coal particles. Fuel Processing Technology, 2022, 225, 107065.	3.7	8
3	Experimental investigation on co-firing residual char and pulverized coal under MILD combustion using low-temperature preheating air. Energy, 2022, 244, 122574.	4.5	12
4	Effects of potassium additives on the combustion behavior of chrysanthemum biochar blended with graphite carbon as a heating source for heat-not-burn tobacco. RSC Advances, 2022, 12, 3431-3436.	1.7	0
5	Hydrodynamic resolved simulation of a char particle combustion by immersed boundary-lattice Boltzmann method. International Communications in Heat and Mass Transfer, 2022, 132, 105915.	2.9	4
6	A simple and efficient parallel immersed boundary-lattice Boltzmann method for fully resolved simulations of incompressible settling suspensions. Computers and Fluids, 2022, 237, 105322.	1.3	10
7	China's power transformation may drastically change employment patterns in the power sector and its upstream supply chains. Environmental Research Letters, 2022, 17, 065005.	2.2	10
8	Volatile Releasing Characteristics of Pulverized Coals under Moderate or Intense Low-Oxygen Dilution Oxy-Combustion Conditions in a Flat-Flame Assisted Entrained Flow Reactor. Processes, 2022, 10, 358.	1.3	2
9	NO mechanisms of syngas MILD combustion diluted with N2, CO2, and H2O. International Journal of Hydrogen Energy, 2022, 47, 16649-16664.	3.8	18
10	Tracing energy-water-greenhouse gas nexus in national supply chains: China 2017. Journal of Cleaner Production, 2022, 352, 131586.	4.6	3
11	MILD combustion of co-firing biomass and pulverized coal fuel blend for heterogeneous fuel NO and PM2.5 emission reduction. Fuel Processing Technology, 2022, 230, 107222.	3.7	13
12	Effects of Pressure and Coal Rank on the Oxy-Fuel Combustion of Pulverized Coal. Energies, 2022, 15, 265.	1.6	1
13	Inertial migration of aerosol particles in three-dimensional microfluidic channels. Particuology, 2021, 55, 23-34.	2.0	13
14	Research on the slagging behaviors of Shenhua coal in different combustion atmospheres. Fuel, 2021, 287, 118537.	3.4	10
15	Non-gray chemical composition based radiative property model of fly ash particles. Proceedings of the Combustion Institute, 2021, 38, 4281-4290.	2.4	5
16	A full spectrum <i>k</i> â€distributionâ€based weightedâ€sumâ€ofâ€grayâ€gases model for pressurized oxyâ€ combustion. International Journal of Energy Research, 2021, 45, 3410-3420.	fuel 2.2	11
17	Effects of potassium additives on the combustion characteristics of graphite as a heating source of heat-not-burn tobacco. RSC Advances, 2021, 11, 1662-1667.	1.7	2
18	Comparative Study between Flameless Combustion and Swirl Flame Combustion Using Low Preheating Temperature Air for Homogeneous Fuel NO Reduction. Energy & Fuels, 2021, 35, 8181-8193.	2.5	22

#	Article	IF	CITATIONS
19	Electroosmotic Flow of Viscoelastic Fluid through a Constriction Microchannel. Micromachines, 2021, 12, 417.	1.4	23
20	Computational Modeling of Boundary Layer Flashback in a Swirling Stratified Flame Using a LES-Based Non-Adiabatic Tabulated Chemistry Approach. Entropy, 2021, 23, 567.	1.1	8
21	Experimental and Kinetic Study on the Oxidation of Syngas-Ammonia under Both N ₂ and CO ₂ Atmospheres in a Jet-Stirred Reactor. Energy & Fuels, 2021, 35, 11445-11456.	2.5	14
22	Experimental and kinetic study of NO-reburning by syngas under high CO2 concentration in a jet stirred reactor. Fuel, 2021, 304, 121403.	3.4	10
23	Assessment of weighted-sum-of-gray-gases models for gas-soot mixture in jet diffusion flames. International Journal of Heat and Mass Transfer, 2021, 181, 121907.	2.5	13
24	Experimental investigation on MILD combustion of co-firing biomass and pulverized coal fuel blend in a pilot-scale furnace. The Proceedings of the International Conference on Power Engineering (ICOPE), 2021, 2021.15, 2021-0193.	0.0	0
25	A unified stochastic particle Bhatnagar-Gross-Krook method for multiscale gas flows. Journal of Computational Physics, 2020, 400, 108972.	1.9	37
26	Evaluation, development, and application of a new skeletal mechanism for fuel-NO formation under air and oxy-fuel combustion. Fuel Processing Technology, 2020, 199, 106256.	3.7	34
27	Experimental research on the characteristics of ash in oxy-fuel combustion. Fuel, 2020, 263, 116799.	3.4	21
28	Dynamic Modeling on the Mode Switching Strategy of a 35 MW _{th} Oxy-fuel Combustion Pilot Plant. Energy & Fuels, 2020, 34, 2260-2271.	2.5	6
29	Effects of gas and particle radiation on IFRF 2.5ÂMW swirling flame under oxy-fuel combustion. Fuel, 2020, 263, 116634.	3.4	18
30	Experiments and kinetic modeling of NO reburning by CH4 under high CO2 concentration in a jet-stirred reactor. Fuel, 2020, 270, 117476.	3.4	18
31	A Benchmark Study of Kinetic Models for Shock Waves. AIAA Journal, 2020, 58, 2596-2608.	1.5	29
32	Re-Recognition of the MILD Combustion Regime by Initial Conditions of <i>T</i> _{in} and <i>X</i> _{O2} for Methane in a Nonadiabatic Well-Stirred Reactor. Energy & Fuels, 2020, 34, 2391-2404.	2.5	26
33	Tunable-Focus Liquid Lens through Charge Injection. Micromachines, 2020, 11, 109.	1.4	4
34	Effects of wall temperature on methane MILD combustion and heat transfer behaviors with non-preheated air. Applied Thermal Engineering, 2020, 174, 115282.	3.0	37
35	A full spectrum k-distribution based non-gray radiative property model for unburnt char. Proceedings of the Combustion Institute, 2019, 37, 3081-3089.	2.4	21
36	Impact of a Coal-Fired Power Plant Shutdown Campaign on Heavy Metal Emissions in China. Environmental Science & Technology, 2019, 53, 14063-14069.	4.6	48

#	Article	IF	CITATIONS
37	Experimental and Numerical Study of the Fuel-NO _{<i>x</i>} Formation at High CO ₂ Concentrations in a Jet-Stirred Reactor. Energy & Fuels, 2019, 33, 6797-6808.	2.5	11
38	A boundary thickening-based direct forcing immersed boundary method for fully resolved simulation of particle-laden flows. Journal of Computational Physics, 2019, 390, 203-231.	1.9	25
39	Numerical simulation of oxyâ€fuel combustion characteristics in a 200 MWe coalâ€fired boiler. , 2019, 9, 276-286.		8
40	Experimental Study on Dust Removal of Flue Gas under O ₂ /CO ₂ Combustion. Energy & Fuels, 2019, 33, 12549-12557.	2.5	3
41	Experimental Investigation of Pressurized Combustion Characteristics of a Single Coal Particle in O ₂ /N ₂ and O ₂ /CO ₂ Environments. Energy & amp; Fuels, 2019, 33, 12781-12790.	2.5	10
42	Reaction Characteristics and MILD Combustion of Residual Char in a Pilot-Scale Furnace. Energy & Fuels, 2019, 33, 12791-12800.	2.5	16
43	Influence of coherent vortex structures in subgrid scale motions on particle statistics in homogeneous isotropic turbulence. International Journal of Multiphase Flow, 2019, 113, 358-370.	1.6	11
44	Detailed investigation of NO mechanism in non-premixed oxy-fuel jet flames with CH4/H2 fuelÂblends. International Journal of Hydrogen Energy, 2018, 43, 8534-8557.	3.8	19
45	Global reaction mechanisms for MILD oxy-combustion of methane. Energy, 2018, 147, 839-857.	4.5	46
46	Optimal Equivalence Ratio to Minimize NO Emission during Moderate or Intense Low-Oxygen Dilution Combustion. Energy & Fuels, 2018, 32, 4478-4492.	2.5	24
47	Penetration, accumulation, and swing characteristics of particle cloud in a turbulent axisymmetric opposed-jet flow. Powder Technology, 2018, 329, 33-46.	2.1	1
48	Heat Transfer During Oxy-fuel Combustion and Boiler Design. , 2018, , 189-208.		1
49	A full spectrum k-distribution based non-gray radiative property model for fly ash particles. International Journal of Heat and Mass Transfer, 2018, 118, 103-115.	2.5	35
50	A compatible configuration strategy for burner streams in a 200â€⁻MWe tangentially fired oxy-fuel combustion boiler. Applied Energy, 2018, 220, 59-69.	5.1	23
51	Prediction of the radiative heat transfer in small and large scale oxy-coal furnaces. Applied Energy, 2018, 211, 523-537.	5.1	35
52	The influence of sub-grid scale motions on particle collision in homogeneous isotropic turbulence. Acta Mechanica Sinica/Lixue Xuebao, 2018, 34, 22-36.	1.5	5
53	New Dependence of NO Emissions on the Equivalence Ratio in Moderate or Intense Low-Oxygen Dilution Combustion. Energy & Fuels, 2018, 32, 12905-12918.	2.5	26
54	Fully resolved simulation of single-particle dynamics in a microcavity. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	20

#	Article	IF	CITATIONS
55	Evaluation, development, and validation of a new reduced mechanism for methane oxy-fuel combustion. International Journal of Greenhouse Gas Control, 2018, 78, 327-340.	2.3	35
56	Oxy-Fuel Combustion Characteristics of Pulverized Coal in a 3 MW Pilot-Scale Furnace. Energy & Fuels, 2018, 32, 10522-10529.	2.5	22
57	Opportunities and Challenges of Oxy-fuel Combustion. , 2018, , 1-12.		11
58	Pilot and Industrial Demonstration of Oxy-fuel Combustion. , 2018, , 209-222.		2
59	Control Concepts, Dynamic Behavior and Mode Transition Strategy for Oxy-fuel Combustion Systems. , 2018, , 239-262.		0
60	System Integration and Optimization for Large Scale Oxy-fuel Combustion Systems. , 2018, , 223-238.		0
61	Flame Characteristics of Oxy-fuel Combustion and Burner Design. , 2018, , 171-187.		1
62	Effect of catalysts on char structural evolution during hydrogasification under high pressure. Fuel, 2017, 188, 474-482.	3.4	47
63	Development of Zhundong subbituminous coal char structure during hydrogasification under high pressure. International Journal of Hydrogen Energy, 2017, 42, 4935-4942.	3.8	9
64	Mercury emission and speciation in fly ash from a 35 MW th large pilot boiler of oxyfuel combustion with different flue gas recycle. Fuel, 2017, 195, 174-181.	3.4	33
65	A numerical investigation on flame stability of oxy-coal combustion: Effects of blockage ratio, swirl number, recycle ratio and partial pressure ratio of oxygen. International Journal of Greenhouse Gas Control, 2017, 57, 63-72.	2.3	11
66	Computer-Controlled Scanning Electron Microscopy Investigation on Ash Formation Characteristics of a Calcium-Rich Coal under O2/CO2 Environments. Energy & Fuels, 2017, 31, 319-327.	2.5	9
67	Numerical Investigation on Development of Initial Ash Deposition Layer for a High-Alkali Coal. Energy & Fuels, 2017, 31, 2596-2606.	2.5	25
68	A Particle Fokker-Planck Algorithm with Multiscale Temporal Discretization for Rarefied and Continuum Gas Flows. Communications in Computational Physics, 2017, 22, 338-374.	0.7	25
69	Experimental and Numerical Investigations on Heat Transfer Characteristics of a 35MW Oxy-fuel Combustion Boiler. Energy Procedia, 2017, 114, 481-489.	1.8	24
70	Experimental and numerical investigations on oxy-coal combustion in a 35 MW large pilot boiler. Fuel, 2017, 187, 315-327.	3.4	84
71	Eulerian and Lagrangian stagnation plane behavior of moderate Reynolds number round opposed-jets flow. Computers and Fluids, 2016, 133, 116-128.	1.3	5
72	Statistical simulation of molecular diffusion effect on turbulent tetrad dispersion. International Journal of Heat and Mass Transfer, 2016, 103, 87-98.	2.5	4

#	Article	IF	CITATIONS
73	Synthesis and characteristics of BaSrCoFe-based perovskite as a functional material for chemical looping gasification of coal. International Journal of Hydrogen Energy, 2016, 41, 22846-22855.	3.8	25
74	Physical and Chemical Effects of CO2Addition on CH4/H2Flames on a Jet in Hot Coflow (JHC) Burner. Energy & Fuels, 2016, , .	2.5	9
75	Lattice Boltzmann simulation of two cold particles settling in Newtonian fluid with thermal convection. International Journal of Heat and Mass Transfer, 2016, 93, 477-490.	2.5	30
76	Experimental investigation on turbulence modification in a dilute gas-particle axisymmetric opposed jets flow. Chemical Engineering Journal, 2016, 286, 76-90.	6.6	15
77	Fundamental and Technical Challenges for a Compatible Design Scheme of Oxyfuel Combustion Technology. Engineering, 2015, 1, 139-149.	3.2	48
78	Effects of furnace chamber shape on the MILD combustion of natural gas. Applied Thermal Engineering, 2015, 76, 64-75.	3.0	65
79	Dynamic simulation and transient analysis of a 3MWth oxy-fuel combustion system. International Journal of Greenhouse Gas Control, 2015, 35, 138-149.	2.3	20
80	Numerical study of H 2 O addition effects on pulverized coal oxy-MILD combustion. Fuel Processing Technology, 2015, 138, 252-262.	3.7	61
81	A full spectrum k-distribution based weighted-sum-of-gray-gases model for oxy-fuel combustion. International Journal of Heat and Mass Transfer, 2015, 90, 218-226.	2.5	57
82	Study on the evolution of the char structure during hydrogasification process using Raman spectroscopy. Fuel, 2015, 157, 97-106.	3.4	86
83	Numerical investigation on oxy-combustion characteristics of a 200MWe tangentially fired boiler. Fuel, 2015, 140, 660-668.	3.4	73
84	Exergy-based control strategy selection for flue gas recycle in oxy-fuel combustion plant. Fuel, 2015, 161, 87-96.	3.4	26
85	Simulating the interactions of two freely settling spherical particles in Newtonian fluid using lattice-Boltzmann method. Applied Mathematics and Computation, 2015, 250, 533-551.	1.4	24
86	Numerical study of combustion characteristics for pulverized coal under oxy-MILD operation. Fuel Processing Technology, 2015, 135, 80-90.	3.7	62
87	Numerical study of particle behavior in laminar axisymmetric opposed-jet flows. Powder Technology, 2015, 270, 176-184.	2.1	8
88	Statistical simulation of decaying and forced homogeneous isotropic turbulence. , 2014, , .		3
89	Moderate or Intense Low-Oxygen Dilution Oxy-combustion Characteristics of Light Oil and Pulverized Coal in a Pilot-Scale Furnace. Energy & Fuels, 2014, 28, 1524-1535.	2.5	96
90	Dynamic Simulation of the Transition Process in a 3 MWth Oxy-fuel Test Facility. Energy Procedia, 2014, 63, 6281-6288.	1.8	6

#	Article	IF	CITATIONS
91	Chemical Looping Combustion of Petroleum Coke with CuFe ₂ O ₄ as Oxygen Carrier. Chemical Engineering and Technology, 2013, 36, 1488-1495.	0.9	25
92	Preparation and Application of the SGCS-Made CaO/ZrO2 Sorbent for Cyclic CO2 Capture. , 2013, , 1189-1194.		0
93	Physical and Chemical Effects of CO ₂ and H ₂ O Additives on Counterflow Diffusion Flame Burning Methane. Energy & Fuels, 2013, 27, 7602-7611.	2.5	62
94	Emission of NO and SO2 in a 300 kW Pilot Scale O2/RFG Combustion. , 2013, , 1005-1009.		2
95	Numerical Simulation of Temperature Field in Blast Furnace Gas Regenerative Furnace. Journal of Computational and Theoretical Nanoscience, 2012, 9, 1248-1254.	0.4	0
96	Simulation of the flow around an upstream transversely oscillating cylinder and a stationary cylinder in tandem. Physics of Fluids, 2012, 24, .	1.6	13
97	Mathematical Modeling of Air– and Oxy–Coal Confined Swirling Flames on Two Extended Eddy-Dissipation Models. Industrial & Engineering Chemistry Research, 2012, 51, 691-703.	1.8	26
98	Comparison of Different Global Combustion Mechanisms Under Hot and Diluted Oxidation Conditions. Combustion Science and Technology, 2012, 184, 259-276.	1.2	61
99	Lattice Boltzmann simulation of the convective heat transfer from a stream-wise oscillating circular cylinder. International Journal of Heat and Fluid Flow, 2012, 37, 147-153.	1.1	12
100	Passive scalar characteristics along inertial particle trajectory in turbulent non-isothermal flows. Science China Technological Sciences, 2012, 55, 2593-2600.	2.0	1
101	An experimental study on turbulence modification in the near-wall boundary layer of a dilute gas-particle channel flow. Experiments in Fluids, 2012, 53, 1385-1403.	1.1	47
102	Chemical looping combustion of a Chinese anthracite with Fe2O3-based and CuO-based oxygen carriers. Fuel Processing Technology, 2012, 96, 104-115.	3.7	57
103	Subgrid-Scale Fluid Statistics along the Inertial Particle Trajectory in Isotropic Turbulence. Chinese Physics Letters, 2012, 29, 094701.	1.3	2
104	Investigation of Chemical Looping Combustion of Coal with CuFe ₂ O ₄ Oxygen Carrier. Energy & Fuels, 2011, 25, 3344-3354.	2.5	114
105	Progress and recent trend in MILD combustion. Science China Technological Sciences, 2011, 54, 255-269.	2.0	133
106	Effects of hydrogen addition on entropy generation in ultra-lean counter-flow methane-air premixed combustion. International Journal of Hydrogen Energy, 2010, 35, 3891-3902.	3.8	49
107	Analysis of entropy generation in non-premixed hydrogen versus heated air counter-flow combustion. International Journal of Hydrogen Energy, 2010, 35, 4736-4746.	3.8	34
108	Natural convection and entropy generation in a vertically concentric annular space. International Journal of Thermal Sciences, 2010, 49, 2439-2452.	2.6	21

Zhaohui Liu

#	Article	IF	CITATIONS
109	Turbulence Modulations in the Boundary Layer of a Horizontal Particle-Laden Channel Flow. Chinese Physics Letters, 2010, 27, 064701.	1.3	6
110	Experimental Investigation on Turbulence Modulation in the Boundary Layer of a Horizontal Particle-laden Channel Flow with Relative Low Mass Loading Ratios. , 2010, , .		5
111	Scalar Statistics along Inertial Particle Trajectory in Isotropic Turbulence. , 2010, , .		Ο
112	Analysis of entropy generation in hydrogen-enriched ultra-lean counter-flow methane–air non-premixed combustion. International Journal of Hydrogen Energy, 2010, 35, 12491-12501.	3.8	34
113	A heuristic curved-boundary treatment in lattice Boltzmann method. Europhysics Letters, 2010, 92, 54003.	0.7	4
114	An economic feasibility study of O2/CO2 recycle combustion technology based on existing coal-fired power plants in China. Fuel, 2009, 88, 1135-1142.	3.4	56
115	A simple lattice Boltzmann scheme for combustion simulation. Computers and Mathematics With Applications, 2008, 55, 1424-1432.	1.4	38
116	A NEW NUMERICAL APPROACH FOR FIRE SIMULATION. International Journal of Modern Physics C, 2007, 18, 187-202.	0.8	22
117	A novel coupled lattice Boltzmann model for low Mach number combustion simulation. Applied Mathematics and Computation, 2007, 193, 266-284.	1.4	60
118	Lattice Boltzmann scheme for simulating thermal micro-flow. Physica A: Statistical Mechanics and Its Applications, 2007, 385, 59-68.	1.2	54
119	A Novel Lattice Boltzmann Model For Reactive Flows with Fast Chemistry. Chinese Physics Letters, 2006, 23, 656-659.	1.3	10
120	Computation of gas–solid flows by finite difference Boltzmann equation. Applied Mathematics and Computation, 2006, 173, 33-49.	1.4	12
121	Experimental investigation on turbulence modification in a horizontal channel flow at relatively low mass loading. Acta Mechanica Sinica/Lixue Xuebao, 2006, 22, 99-108.	1.5	32
122	Effect of particle inertia on temperature statistics in particle-laden homogeneous isotropic turbulence. Science in China Series D: Earth Sciences, 2006, 49, 210-221.	0.9	6
123	A simple lattice Boltzmann scheme for low Mach number reactive flows. Science in China Series D: Earth Sciences, 2006, 49, 714-726.	0.9	2
124	THERMAL LATTICE BOLTZMANN MODEL WITH VISCOUS HEAT DISSIPATION IN THE INCOMPRESSIBLE LIMIT. International Journal of Modern Physics C, 2006, 17, 1131-1139.	0.8	5
125	LATTICE BOLTZMANN METHOD IN SIMULATION OF THERMAL MICRO-FLOW WITH TEMPERATURE JUMP. International Journal of Modern Physics C, 2006, 17, 603-614.	0.8	24
126	Kinetic mechanism studies on reactions of mercury and oxidizing species in coal combustion. Fuel, 2005, 84, 1215-1220.	3.4	49

#	Article	IF	CITATIONS
127	Particle behavior in homogeneous isotropic turbulence. Acta Mechanica Sinica/Lixue Xuebao, 2005, 21, 112-120.	1.5	12
128	A novel incompressible finite-difference lattice Boltzmann equation for particle-laden flow. Acta Mechanica Sinica/Lixue Xuebao, 2005, 21, 574-581.	1.5	17
129	Lattice-Boltzmann simulation of particle-laden flow over a backward-facing step. Chinese Physics B, 2004, 13, 1657-1664.	1.3	11
130	Simulation of Swirling Gas-Particle Flows Using Different Time Scales for the Closure of Two-Phase Velocity Correlation in the Second-Order Moment Two-Phase Turbulence Model1. Journal of Fluids Engineering, Transactions of the ASME, 2003, 125, 247-250.	0.8	9
131	Numerical and experimental investigations on the performance of a 300 MW pulverized coal furnace. Proceedings of the Combustion Institute, 2002, 29, 811-818.	2.4	13
132	A joint PDF model for turbulent spray evaporation/combustion. Proceedings of the Combustion Institute, 2002, 29, 561-568.	2.4	15
133	A second-order-moment–Monte-Carlo model for simulating swirling gas–particle flows. Powder Technology, 2001, 120, 216-222.	2.1	13
134	Combustion Stability Assessment for Utility Pulverized Coal-Fired Boilers under Low Loads. Combustion Science and Technology, 2000, 157, 325-340.	1.2	1
135	NO Reburning by CH4-H2 Mixture under High CO2 Concentration in a Jet-Stirred Reactor. IOP Conference Series: Earth and Environmental Science, 0, 621, 012044.	0.2	0
136	A Pressure Compensation Method for Lattice Boltzmann Simulation of Particle-laden Flows in Periodic Geometries. Physics of Fluids, 0, , .	1.6	0