Daisuke Koya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8479150/publications.pdf

Version: 2024-02-01

161	13,090	49	110
papers	citations	h-index	g-index
173	173 docs citations	173	22195
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. Journal of Clinical Investigation, 2010, 120, 1043-1055.	3.9	560
3	Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC \hat{l}^2 inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. FASEB Journal, 2000, 14, 439-447.	0.2	417
4	Resveratrol Improves Oxidative Stress and Protects Against Diabetic Nephropathy Through Normalization of Mn-SOD Dysfunction in AMPK/SIRT1-Independent Pathway. Diabetes, 2011, 60, 634-643.	0.3	300
5	Linagliptin-Mediated DPP-4 Inhibition Ameliorates Kidney Fibrosis in Streptozotocin-Induced Diabetic Mice by Inhibiting Endothelial-to-Mesenchymal Transition in a Therapeutic Regimen. Diabetes, 2014, 63, 2120-2131.	0.3	298
6	Impaired Podocyte Autophagy Exacerbates Proteinuria in Diabetic Nephropathy. Diabetes, 2016, 65, 755-767.	0.3	243
7	Effects of Antioxidants in Diabetes-Induced Oxidative Stress in the Glomeruli of Diabetic Rats. Journal of the American Society of Nephrology: JASN, 2003, 14, S250-S253.	3.0	240
8	The protective role of Sirt1 in vascular tissue: its relationship to vascular aging and atherosclerosis. Aging, 2016, 8, 2290-2307.	1.4	201
9	Rodent models of diabetic nephropathy: their utility and limitations. International Journal of Nephrology and Renovascular Disease, 2016, Volume 9, 279-290.	0.8	190
10	Dietary Restriction Ameliorates Diabetic Nephropathy through Anti-Inflammatory Effects and Regulation of the Autophagy via Restoration of Sirt1 in Diabetic Wistar Fatty (<i>fa/fa</i>) Rats: A Model of Type 2 Diabetes. Experimental Diabetes Research, 2011, 2011, 1-11.	3.8	186
11	Obesity-Mediated Autophagy Insufficiency Exacerbates Proteinuria-induced Tubulointerstitial Lesions. Journal of the American Society of Nephrology: JASN, 2013, 24, 1769-1781.	3.0	185
12	Sirtuins and Type 2 Diabetes: Role in Inflammation, Oxidative Stress, and Mitochondrial Function. Frontiers in Endocrinology, 2019, 10, 187.	1.5	170
13	Autophagy in metabolic disease and ageing. Nature Reviews Endocrinology, 2021, 17, 647-661.	4.3	159
14	Inhibition of mTOR signaling with rapamycin attenuates renal hypertrophy in the early diabetic mice. Biochemical and Biophysical Research Communications, 2006, 340, 296-301.	1.0	150
15	Role of the endothelial-to-mesenchymal transition in renal fibrosis of chronic kidney disease. Clinical and Experimental Nephrology, 2013, 17, 488-497.	0.7	145
16	Nutrient Sensing, Autophagy, and Diabetic Nephropathy. Diabetes, 2012, 61, 23-29.	0.3	141
17	Renal protective effects of empagliflozin via inhibition of EMT and aberrant glycolysis in proximal tubules. JCI Insight, 2020, 5, .	2.3	131
18	Interactions of DPP-4 and integrin \hat{l}^21 influences endothelial-to-mesenchymal transition. Kidney International, 2015, 88, 479-489.	2.6	127

#	Article	IF	CITATIONS
19	Renal Protective Effects of Resveratrol. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-7.	1.9	123
20	SIRT3 deficiency leads to induction of abnormal glycolysis in diabetic kidney with fibrosis. Cell Death and Disease, 2018, 9, 997.	2.7	117
21	MicroRNAs in Kidney Fibrosis and Diabetic Nephropathy: Roles on EMT and EndMT. BioMed Research International, 2013, 2013, 1-10.	0.9	104
22	Fatty acids are novel nutrient factors to regulate mTORC1 lysosomal localization and apoptosis in podocytes. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1097-1108.	1.8	99
23	The impact of dietary protein intake on longevity and metabolic health. EBioMedicine, 2019, 43, 632-640.	2.7	97
24	SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells. Biochemical and Biophysical Research Communications, 2012, 427, 191-196.	1.0	90
25	lpragliflozin improves mitochondrial abnormalities in renal tubules induced by a highâ€fat diet. Journal of Diabetes Investigation, 2018, 9, 1025-1032.	1.1	88
26	Inhibition of Dipeptidyl Peptidase-4 Accelerates Epithelial–Mesenchymal Transition and Breast Cancer Metastasis via the CXCL12/CXCR4/mTOR Axis. Cancer Research, 2019, 79, 735-746.	0.4	86
27	Autophagy: A Novel Therapeutic Target for Diabetic Nephropathy. Diabetes and Metabolism Journal, 2015, 39, 451.	1.8	84
28	N-Acetyl-Seryl-Aspartyl-Lysyl-Proline Inhibits TGF-β–Mediated Plasminogen Activator Inhibitor-1 Expression via Inhibition of Smad Pathway in Human Mesangial Cells. Journal of the American Society of Nephrology: JASN, 2003, 14, 863-872.	3.0	80
29	Regulating Autophagy as a Therapeutic Target for Diabetic Nephropathy. Current Diabetes Reports, 2017, 17, 53.	1.7	79
30	Loss of endothelial glucocorticoid receptor accelerates diabetic nephropathy. Nature Communications, 2021, 12, 2368.	5.8	79
31	A very-low-protein diet ameliorates advanced diabetic nephropathy through autophagy induction by suppression of the mTORC1 pathway in Wistar fatty rats, an animal model of type 2 diabetes and obesity. Diabetologia, 2016, 59, 1307-1317.	2.9	75
32	Sirtuins as Possible Drug Targets in Type 2 Diabetes. Current Drug Targets, 2013, 14, 622-636.	1.0	74
33	N-acetyl-seryl-aspartyl-lysyl-proline Inhibits Diabetes-Associated Kidney Fibrosis and Endothelial-Mesenchymal Transition. BioMed Research International, 2014, 2014, 1-12.	0.9	73
34	Genetic variations in the gene encoding TFAP2B are associated with type 2 diabetes mellitus. Journal of Human Genetics, 2005, 50, 283-292.	1.1	68
35	Urinary Potassium Excretion and Renal and Cardiovascular Complications in Patients with Type 2 Diabetes and Normal Renal Function. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 2152-2158.	2.2	68
36	N-Acetyl-Seryl-Aspartyl-Lysyl-Proline Prevents Renal Insufficiency and Mesangial Matrix Expansion in Diabetic db/db Mice. Diabetes, 2005, 54, 838-845.	0.3	66

#	Article	IF	Citations
37	PDGFRÎ ² Regulates Adipose Tissue Expansion and Glucose Metabolism via Vascular Remodeling in Diet-Induced Obesity. Diabetes, 2017, 66, 1008-1021.	0.3	66
38	Endothelial autophagy deficiency induces IL6 - dependent endothelial mesenchymal transition and organ fibrosis. Autophagy, 2020, 16, 1905-1914.	4.3	65
39	The Role of Autophagy in the Pathogenesis of Diabetic Nephropathy. Journal of Diabetes Research, 2013, 2013, 1-9.	1.0	64
40	Association between single nucleotide polymorphisms within genes encoding sirtuin families and diabetic nephropathy in Japanese subjects with type 2 diabetes. Clinical and Experimental Nephrology, 2011, 15, 381-390.	0.7	63
41	FGFR1 is critical for the anti-endothelial mesenchymal transition effect of N-acetyl-seryl-aspartyl-lysyl-proline via induction of the MAP4K4 pathway. Cell Death and Disease, 2017, 8, e2965-e2965.	2.7	61
42	Endothelin-1 Induces Cyclooxygenase-2 Expression Via Nuclear Factor of Activated T-Cell Transcription Factor in Glomerular Mesangial Cells. Journal of the American Society of Nephrology: JASN, 2001, 12, 1359-1368.	3.0	61
43	CD38 inhibition by apigenin ameliorates mitochondrial oxidative stress through restoration of the intracellular NAD+/NADH ratio and Sirt3 activity in renal tubular cells in diabetic rats. Aging, 2020, 12, 11325-11336.	1.4	61
44	Anti-aging molecule, Sirt1: a novel therapeutic target for diabetic nephropathy. Archives of Pharmacal Research, 2013, 36, 230-236.	2.7	60
45	Effect of Antifibrotic MicroRNAs Crosstalk on the Action of N-acetyl-seryl-aspartyl-lysyl-proline in Diabetes-related Kidney Fibrosis. Scientific Reports, 2016, 6, 29884.	1.6	60
46	Dapagliflozin Restores Impaired Autophagy and Suppresses Inflammation in High Glucose-Treated HK-2 Cells. Cells, 2021, 10, 1457.	1.8	60
47	Mammalian autophagy is essential for hepatic and renal ketogenesis during starvation. Scientific Reports, 2016, 6, 18944.	1.6	58
48	N-Acetyl-Seryl-Aspartyl-Lysyl-Proline Ameliorates the Progression of Renal Dysfunction and Fibrosis in WKY Rats with Established Anti–Glomerular Basement Membrane Nephritis. Journal of the American Society of Nephrology: JASN, 2006, 17, 674-685.	3.0	55
49	Endothelial FGFR1 (Fibroblast Growth Factor Receptor 1) Deficiency Contributes Differential Fibrogenic Effects in Kidney and Heart of Diabetic Mice. Hypertension, 2020, 76, 1935-1944.	1.3	55
50	Lipid mediators in diabetic nephropathy. Fibrogenesis and Tissue Repair, 2014, 7, 12.	3.4	54
51	Inhibition of Angiotensin-Converting Enzyme Ameliorates Renal Fibrosis by Mitigating DPP-4 Level and Restoring Antifibrotic MicroRNAs. Genes, 2020, 11, 211.	1.0	54
52	Recent Insights Into SREBP as a Direct Mediator of Kidney Fibrosis via Lipid-Independent Pathways. Frontiers in Pharmacology, 2020, 11, 265.	1.6	53
53	Manganese Superoxide Dismutase Dysfunction and the Pathogenesis of Kidney Disease. Frontiers in Physiology, 2020, 11, 755.	1.3	52
54	Role of Nutrient-Sensing Signals in the Pathogenesis of Diabetic Nephropathy. BioMed Research International, 2014, 2014, 1-9.	0.9	51

#	Article	IF	CITATIONS
55	Eplerenone prevented obesity-induced inflammasome activation and glucose intolerance. Journal of Endocrinology, 2017, 235, 179-191.	1.2	51
56	Dipeptidyl peptidase-4 and kidney fibrosis in diabetes. Fibrogenesis and Tissue Repair, 2016, 9, 1.	3.4	50
57	Endothelial SIRT3 regulates myofibroblast metabolic shifts in diabetic kidneys. IScience, 2021, 24, 102390.	1.9	50
58	Anti-albuminuric effects of spironolactone in patients with type 2 diabetic nephropathy: a multicenter, randomized clinical trial. Clinical and Experimental Nephrology, 2015, 19, 1098-1106.	0.7	49
59	Role of dietary amino acid balance in diet restrictionâ€mediated lifespan extension, renoprotection, and muscle weakness in aged mice. Aging Cell, 2018, 17, e12796.	3.0	45
60	The PKM2 activator TEPPâ€46 suppresses kidney fibrosis via inhibition of the EMT program and aberrant glycolysis associated with suppression of HIFâ€1α accumulation. Journal of Diabetes Investigation, 2021, 12, 697-709.	1.1	44
61	Clinical therapeutic strategies for early stage of diabetic kidney disease. World Journal of Diabetes, 2014, 5, 342.	1.3	42
62	Renal mitochondrial oxidative stress is enhanced by the reduction of Sirt3 activity, in Zucker diabetic fatty rats. Redox Report, 2018, 23, 153-159.	1.4	42
63	Metabolic reprogramming by <i>N</i> à€acetylâ€serylâ€aspartylâ€lysylâ€proline protects against diabetic kidney disease. British Journal of Pharmacology, 2020, 177, 3691-3711.	2.7	42
64	Calorie restriction in overweight males ameliorates obesity-related metabolic alterations and cellular adaptations through anti-aging effects, possibly including AMPK and SIRT1 activation. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4820-4827.	1.1	41
65	Predictive Properties of Plasma Amino Acid Profile for Cardiovascular Disease in Patients with Type 2 Diabetes. PLoS ONE, 2014, 9, e101219.	1.1	41
66	1-Methylnicotinamide ameliorates lipotoxicity-induced oxidative stress and cell death in kidney proximal tubular cells. Free Radical Biology and Medicine, 2015, 89, 831-841.	1.3	41
67	The Japanese clinical practice guideline for acute kidney injury 2016. Clinical and Experimental Nephrology, 2018, 22, 985-1045.	0.7	40
68	dâ€Î±â€tocopherol treatment prevents glomerular dysfunctions in diabetic rats through inhibition of protein kinase Câ€diacylglycerol pathway. BioFactors, 1998, 7, 69-76.	2.6	39
69	Secular changes in clinical manifestations of kidney disease among Japanese adults with typeÂ2 diabetes from 1996 to 2014. Journal of Diabetes Investigation, 2019, 10, 1032-1040.	1.1	39
70	Effect of Methionine Restriction on Aging: Its Relationship to Oxidative Stress. Biomedicines, 2021, 9, 130.	1.4	39
71	Linagliptin but not Sitagliptin inhibited transforming growth factor- \hat{l}^2 2-induced endothelial DPP-4 activity and the endothelial-mesenchymal transition. Biochemical and Biophysical Research Communications, 2016, 471, 184-190.	1.0	38
72	The Effect of Piceatannol from Passion Fruit (Passiflora edulis) Seeds on Metabolic Health in Humans. Nutrients, 2017, 9, 1142.	1.7	38

#	Article	IF	Citations
73	A Low-Protein Diet for Diabetic Kidney Disease: Its Effect and Molecular Mechanism, an Approach from Animal Studies. Nutrients, 2018, 10, 544.	1.7	38
74	Role of angiotensin II-mediated AMPK inactivation on obesity-related salt-sensitive hypertension. Biochemical and Biophysical Research Communications, 2012, 418, 559-564.	1.0	37
75	Oral Administration of N-Acetyl-seryl-aspartyl-lysyl-proline Ameliorates Kidney Disease in Both Type 1 and Type 2 Diabetic Mice via a Therapeutic Regimen. BioMed Research International, 2016, 2016, 1-11.	0.9	36
76	Combinational effect of genes for the renin–angiotensin system in conferring susceptibility to diabetic nephropathy. Journal of Human Genetics, 2007, 52, 143-151.	1.1	35
77	The Japanese Clinical Practice Guideline for acute kidney injury 2016. Journal of Intensive Care, 2018, 6, 48.	1.3	35
78	Conditions, pathogenesis, and progression of diabetic kidney disease and early decliner in Japan. BMJ Open Diabetes Research and Care, 2020, 8, e000902.	1.2	31
79	Deficiency in catechol-o-methyltransferase is linked to a disruption of glucose homeostasis in mice. Scientific Reports, 2017, 7, 7927.	1.6	30
80	Successful recovery of infective endocarditis-induced rapidly progressive glomerulonephritis by steroid therapy combined with antibiotics: a case report. BMC Nephrology, 2004, 5, 18.	0.8	29
81	Effects of high sodium intake and diuretics on the circadian rhythm of blood pressure in type 2 diabetic patients treated with an angiotensin II receptor blocker. Clinical and Experimental Nephrology, 2009, 13, 300-306.	0.7	29
82	Catechol-O-Methyltransferase Deficiency Leads to Hypersensitivity of the Pressor Response Against Angiotensin II. Hypertension, 2017, 69, 1156-1164.	1.3	28
83	MicroRNA148b-3p inhibits mTORC1-dependent apoptosis in diabetes by repressing TNFR2 inÂproximal tubular cells. Kidney International, 2016, 90, 1211-1225.	2.6	27
84	Sirtuins and Renal Oxidative Stress. Antioxidants, 2021, 10, 1198.	2.2	27
85	N-acetyl-seryl-aspartyl-lysyl-proline: a valuable endogenous anti-fibrotic peptide for combating kidney fibrosis in diabetes. Frontiers in Pharmacology, 2014, 5, 70.	1.6	26
86	AMP-Activated Protein (AMPK) in Pathophysiology of Pregnancy Complications. International Journal of Molecular Sciences, 2018, 19, 3076.	1.8	26
87	Relationship Between Autophagy and Metabolic Syndrome Characteristics in the Pathogenesis of Atherosclerosis. Frontiers in Cell and Developmental Biology, 2021, 9, 641852.	1.8	26
88	Cancer biology in diabetes. Journal of Diabetes Investigation, 2014, 5, 251-264.	1,1	25
89	Dipeptidyl peptidase-4 plays a pathogenic role in BSA-induced kidney injury in diabetic mice. Scientific Reports, 2019, 9, 7519.	1.6	25
90	Elevation of the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline: a blood pressure-independent beneficial effect of angiotensin I-converting enzyme inhibitors. Fibrogenesis and Tissue Repair, 2011, 4, 25.	3.4	23

#	Article	IF	Citations
91	Pituitary apoplexy following gonadotropin-releasing hormone agonist administration with gonadotropin-secreting pituitary adenoma. Journal of Clinical Neuroscience, 2015, 22, 601-603.	0.8	23
92	A low-protein diet exerts a beneficial effect on diabetic status and prevents diabetic nephropathy in Wistar fatty rats, an animal model of type 2 diabetes and obesity. Nutrition and Metabolism, 2018, 15, 20.	1.3	23
93	Metformin Mitigates DPP-4 Inhibitor-Induced Breast Cancer Metastasis via Suppression of mTOR Signaling. Molecular Cancer Research, 2021, 19, 61-73.	1.5	22
94	The Relevance of the Renin-Angiotensin System in the Development of Drugs to Combat Preeclampsia. International Journal of Endocrinology, 2015, 2015, 1-12.	0.6	21
95	Prevalence of albuminuria and renal dysfunction, and related clinical factors in Japanese patients with diabetes: The Japan Diabetes Complication and its Prevention prospective study $\hat{A}5$. Journal of Diabetes Investigation, 2020, 11, 325-332.	1.1	21
96	Mechanism of Activation of Mechanistic Target of Rapamycin Complex 1 by Methionine. Frontiers in Cell and Developmental Biology, 2020, 8, 715.	1.8	21
97	CD26/DPP-4: Type 2 Diabetes Drug Target with Potential Influence on Cancer Biology. Cancers, 2021, 13, 2191.	1.7	20
98	Stromal cell-derived factor 1 (SDF1) attenuates platelet-derived growth factor-B (PDGF-B)-induced vascular remodeling for adipose tissue expansion in obesity. Angiogenesis, 2020, 23, 667-684.	3.7	19
99	Interactions among Long Non-Coding RNAs and microRNAs Influence Disease Phenotype in Diabetes and Diabetic Kidney Disease. International Journal of Molecular Sciences, 2021, 22, 6027.	1.8	19
100	Lamp-2 deficiency prevents high-fat diet-induced obese diabetes via enhancing energy expenditure. Biochemical and Biophysical Research Communications, 2015, 465, 249-255.	1.0	18
101	identification of subgroups of patients with type 2 diabetes with differences in renal function preservation, comparing patients receiving sodiumâ€glucose coâ€transporterâ€2 inhibitors with those receiving dipeptidyl peptidaseâ€4 inhibitors, using a supervised machineâ€learning algorithm (PROFILE) Tj ETQq1	120278431	. 4 8gBT /Ov
102	Metabolism, 2019, 21, 1925-1934. Pro-inflammatory macrophages coupled with glycolysis remodel adipose vasculature by producing platelet-derived growth factor-B in obesity. Scientific Reports, 2020, 10, 670.	1.6	18
103	Deficiency in Dipeptidyl Peptidase-4 Promotes Chemoresistance Through the CXCL12/CXCR4/mTOR/TGFÎ ² Signaling Pathway in Breast Cancer Cells. International Journal of Molecular Sciences, 2020, 21, 805.	1.8	18
104	Methionine abrogates the renoprotective effect of a low-protein diet against diabetic kidney disease in obese rats with type 2 diabetes. Aging, 2020, 12, 4489-4505.	1.4	18
105	A ketogenic amino acid rich diet benefits mitochondrial homeostasis by altering the AKT/4EBP1 and autophagy signaling pathways in the gastrocnemius and soleus. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1547-1555.	1.1	17
106	Randomized trial of an intensified, multifactorial intervention in patients with advancedâ€stage diabetic kidney disease: Diabetic Nephropathy Remission and Regression Team Trial in Japan (DNETTâ€Japan). Journal of Diabetes Investigation, 2021, 12, 207-216.	1.1	17
107	Dipeptidyl peptidase-4 inhibition and renoprotection. Current Opinion in Nephrology and Hypertension, 2017, 26, 56-66.	1.0	16
108	Statin Use in Patients with Diabetes and Kidney Disease: The Japanese Experience. Journal of Atherosclerosis and Thrombosis, 2013, 20, 407-424.	0.9	15

#	Article	IF	CITATIONS
109	The impact of mitochondrial quality control by Sirtuins on the treatment of type 2 diabetes and diabetic kidney disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165756.	1.8	15
110	Effects of SGLT2 Inhibitors on Atherosclerosis: Lessons from Cardiovascular Clinical Outcomes in Type 2 Diabetic Patients and Basic Researches. Journal of Clinical Medicine, 2022, 11, 137.	1.0	15
111	Hypothalamic AMP-Activated Protein Kinase Regulates Biphasic Insulin Secretion from Pancreatic \hat{l}^2 Cells during Fasting and in Type 2 Diabetes. EBioMedicine, 2016, 13, 168-180.	2.7	14
112	Decline in estimated glomerular filtration rate is associated with risk of end-stage renal disease in type 2 diabetes with macroalbuminuria: an observational study from JDNCS. Clinical and Experimental Nephrology, 2018, 22, 377-387.	0.7	14
113	Role of Sirt1 as a Regulator of Autophagy. , 2016, , 89-100.		13
114	FGFR1 is essential for N-acetyl-seryl-aspartyl-lysyl-proline regulation of mitochondrial dynamics by upregulating microRNA let-7b-5p. Biochemical and Biophysical Research Communications, 2018, 495, 2214-2220.	1.0	13
115	Significance of SGLT2 inhibitors: lessons from renal clinical outcomes in patients with type 2 diabetes and basic researches. Diabetology International, 2020, 11, 245-251.	0.7	13
116	Therapeutic management of diabetic kidney disease. Journal of Diabetes Investigation, 2011, 2, 248-254.	1.1	12
117	Efficacy and tolerability of vildagliptin in type 2 diabetic patients on hemodialysis. Journal of Diabetes Investigation, 2012, 3, 298-301.	1.1	12
118	Comparative Effects of Direct Renin Inhibitor and Angiotensin Receptor Blocker on Albuminuria in Hypertensive Patients with Type 2 Diabetes. A Randomized Controlled Trial. PLoS ONE, 2016, 11, e0164936.	1.1	11
119	Relevance of Autophagy Induction by Gastrointestinal Hormones: Focus on the Incretin-Based Drug Target and Glucagon. Frontiers in Pharmacology, 2019, 10, 476.	1.6	11
120	Diabetic Nephropathy Remission and Regression Team Trial in Japan (DNETT-Japan): Rationale and study design. Diabetes Research and Clinical Practice, 2010, 87, 228-232.	1.1	10
121	A new classification of Diabetic Nephropathy 2014: a report from Joint Committee on Diabetic Nephropathy. Diabetology International, 2014, 5, 207-211.	0.7	10
122	NAD+ Homeostasis in Diabetic Kidney Disease. Frontiers in Medicine, 2021, 8, 703076.	1.2	10
123	Three ileus cases associated with the use of dipeptidyl peptidaseâ€4 inhibitors in diabetic patients. Journal of Diabetes Investigation, 2013, 4, 673-675.	1.1	8
124	Supplementation with Red Wine Extract Increases Insulin Sensitivity and Peripheral Blood Mononuclear Sirt1 Expression in Nondiabetic Humans. Nutrients, 2020, 12, 3108.	1.7	8
125	Exercise Ameliorates Diabetic Kidney Disease in Type 2 Diabetic Fatty Rats. Antioxidants, 2021, 10, 1754.	2.2	8
126	Evaluation of a New Care System Provided to Diabetic Patients in the Outpatient Clinic Internal Medicine, 2000, 39, 783-787.	0.3	7

#	Article	IF	CITATIONS
127	Anagliptin ameliorates albuminuria and urinary liver-type fatty acid-binding protein excretion in patients with type 2 diabetes with nephropathy in a glucose-lowering-independent manner. BMJ Open Diabetes Research and Care, 2017, 5, e000391.	1.2	7
128	Effect of switching to teneligliptin from other dipeptidyl peptidaseâ€4 inhibitors on glucose control and renoprotection in typeÂ2 diabetes patients with diabetic kidney disease. Journal of Diabetes Investigation, 2019, 10, 706-713.	1,1	7
129	βklotho is essential for the antiâ€endothelial mesenchymal transition effects of <i>N</i> â€acetylâ€serylâ€aspartylâ€lysylâ€proline. FEBS Open Bio, 2019, 9, 1029-1038.	1.0	7
130	Medical nutrition therapy and dietary counseling for patients with diabetes-energy, carbohydrates, protein intake and dietary counseling. Diabetology International, 2020, 11, 224-239.	0.7	7
131	Interventions against nutrient-sensing pathways represent an emerging new therapeutic approach for diabetic nephropathy. Clinical and Experimental Nephrology, 2014, 18, 210-213.	0.7	6
132	Sodium–glucose cotransporterÂ2 inhibitors in typeÂ2 diabetes patients with renal function impairment slow the annual renal function decline, in a real clinical practice. Journal of Diabetes Investigation, 2021, 12, 1577-1585.	1.1	6
133	Rapid enlargement of an intracranial germ cell tumor after gonadotropin hormone therapy. Journal of Clinical Neuroscience, 2016, 31, 185-188.	0.8	5
134	Cyclic and intermittent very lowâ€protein diet can have beneficial effects against advanced diabetic nephropathy in Wistar fatty (<i>fa/fa</i>) rats, an animal model of type 2 diabetes and obesity. Nephrology, 2017, 22, 1030-1034.	0.7	5
135	N-Acetyl-seryl-aspartyl-lysyl-proline is a potential biomarker of renal function in normoalbuminuric diabetic patients with eGFR ≥ 30Âml/min/1.73Âm2. Clinical and Experimental Nephrology, 2019, 23,	1884-101	2 ⁵ .
136	CDâ€1 <i>^{db/db}</i> mice: A novel type 2 diabetic mouse model with progressive kidney fibrosis. Journal of Diabetes Investigation, 2020, 11, 1470-1481.	1.1	5
137	Anterior pituitary function in Rathke's cleft cysts <i>versus</i> nonfunctioning pituitary adenomas. Endocrine Journal, 2021, 68, 943-952.	0.7	5
138	The Japanese Clinical Practice Guideline for acute kidney injury 2016. Renal Replacement Therapy, 2018, 4, .	0.3	4
139	Dietary Magnesium Insufficiency Induces Salt-Sensitive Hypertension in Mice Associated With Reduced Kidney Catechol-O-Methyl Transferase Activity. Hypertension, 2021, 78, 138-150.	1.3	4
140	Epidermal growth factor receptor signaling and the progression of diabetic nephropathy. Journal of Diabetes Investigation, 2015, 6, 519-521.	1.1	3
141	Diabetic kidney disease: Its current trends and future therapeutic perspectives. Journal of Diabetes Investigation, 2019, 10, 1174-1176.	1.1	3
142	Case report of superior mesenteric artery syndrome that developed in a lean typeÂ2 diabetes patient and was associated with rapid body weight loss after sodium–glucose cotransporterÂ2 inhibitor administration. Journal of Diabetes Investigation, 2020, 11, 1359-1362.	1.1	3
143	Levofloxacin-induced Achilles tendon rupture in a patient with systemic microscopic polyangiitis. Modern Rheumatology, 2005, 15, 217-219.	0.9	2
144	Restoration of the Hypothalamic-pituitary-adrenal Response to Hypoglycemia in Type 2 Diabetes by Avoiding Chronic Hypoglycemia. Internal Medicine, 2016, 55, 3471-3473.	0.3	2

#	Article	IF	CITATIONS
145	Impact of empagliflozin on diabetic kidney disease. Journal of Diabetes Investigation, 2017, 8, 658-660.	1.1	1
146	Proposal of classification of "chronic kidney disease (CKD) with diabetes―in clinical setting. Diabetology International, 2019, 10, 180-182.	0.7	1
147	Efficacy of SGLT2 inhibitor in type 2 diabetic patients under dietary instructions: A pilot study. Clinical and Medical Investigations, 2020, 5, .	0.3	1
148	Adenosine/A1R signaling pathway did not play dominant roles on the influence of SGLT2 inhibitor in the kidney of BSAâ€overloaded STZâ€induced diabetic mice. Journal of Diabetes Investigation, 2022, , .	1.1	1
149	Rationale, Design and Baseline Characteristics of the Effect of Canagliflozin in Type 2 Diabetic Patients with Microalbuminuria in Japanese Population (<scp>CANPIONE</scp>) study. Diabetes, Obesity and Metabolism, 2022, , .	2.2	1
150	Insulin-like growth factor I stimulates glucose uptake and expression of glucose transporter 1 in cultured mesangial cells. Clinical and Experimental Nephrology, 1999, 3, 159-162.	0.7	0
151	Corrigendum to "Legumain/asparaginyl endopeptidase controls extracellular matrix remodeling through the degradation of fibronectin in mouse renal proximal tubular cells―[FEBS Lett. 581 (2007) 1417-1424]. FEBS Letters, 2007, 581, 3579-3579.	1.3	0
152	O13. Catechol-O-methyltransferase deficiency leads to hypersensitivity on the pressor response against angiotensin II. Pregnancy Hypertension, 2015, 5, 212-213.	0.6	0
153	Severe electrolytes disorders with the interstitial kidney alterations in the patient with the history of total thyroidectomy and parathyroidectomy: possible role of vitamin D deficiency. Clinical Case Reports (discontinued), 2018, 6, 983-989.	0.2	0
154	Rapid effects of pitavastatin on uric acid homeostasis. Gout and Nucleic Acid Metabolism, 2011, 35, 39-47.	0.0	0
155	The Protective Effect Of A Low-protein Diet Against Tubulo-interstitial Damage In Diabetic Kidneys. Cellular & Molecular Medicine: Open Access, 2016, 02, .	0.4	0
156	Patient Assessment and Diagnosis. , 2017, , 47-56.		0
157	Backcross db Gene into CD-1 Background Results in Novel Type 2 Diabetic Mouse Model with Progressive Kidney Fibrosis. Diabetes, 2018, 67, 500-P.	0.3	0
158	Renal Mitochondrial Oxidative Stress Induced by NAD+-Dependent Sirt3 Inactivation via Overexpression of CD38 (NAD+ase) in Diabetic Kidney Disease. Diabetes, 2018, 67, 495-P.	0.3	0
159	513-P: Adenosine Signal Plays an Important Role in Renoprotective Effects of SGLT2 Inhibitor in Proteinuric Diabetic Mice. Diabetes, 2019, 68, 513-P.	0.3	0
160	463-P: Linagliptin Ameliorated Heart Damage Associated with the Suppression of Necroptosis in Type 1 Diabetic Mice. Diabetes, 2019, 68, 463-P.	0.3	0
161	Novel PKD2 Missense Mutation p.Ile424Ser in an Individual with Multiple Hepatic Cysts: A Case Report. Medicines (Basel, Switzerland), 2022, 9, 25.	0.7	0