Célia Henriques

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8479132/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In vitro and in vivo evaluation of electrospun nanofibers of PCL, chitosan and gelatin: A comparative study. Materials Science and Engineering C, 2015, 46, 348-358.	7.3	210
2	Evaluation of nanofibrous scaffolds obtained from blends of chitosan, gelatin and polycaprolactone for skin tissue engineering. International Journal of Biological Macromolecules, 2017, 102, 1174-1185.	7.5	134
3	In vitro evaluation of crosslinked electrospun fish gelatin scaffolds. Materials Science and Engineering C, 2013, 33, 1219-1227.	7.3	77
4	A Systematic Study of Solution and Processing Parameters on Nanofiber Morphology Using a New Electrospinning Apparatus. Journal of Nanoscience and Nanotechnology, 2009, 9, 3535-3545.	0.9	55
5	Electrospinning polycaprolactone dissolved in glacial acetic acid: Fiber production, nonwoven characterization, and <i>In Vitro</i> evaluation. Journal of Applied Polymer Science, 2014, 131, .	2.6	54
6	Cellulose-based electrospun fibers functionalized with polypyrrole and polyaniline for fully organic batteries. Journal of Materials Chemistry A, 2018, 6, 256-265.	10.3	53
7	Electrospun biodegradable chitosan based-poly(urethane urea) scaffolds for soft tissue engineering. Materials Science and Engineering C, 2019, 103, 109819.	7.3	33
8	Simultaneous photo-induced cross-linking and silver nanoparticle formation in a PVP electrospun wound dressing. Materials Letters, 2017, 207, 145-148.	2.6	32
9	Synthesis, electrospinning and in vitro test of a new biodegradable gelatin-based poly(ester urethane) Tj ETQq1	0,784314 5.4	1 rgBT /Overl
10	Slabs of stabilized jellium: Quantum-size and self-compression effects. Physical Review B, 2000, 62, 1699-1705.	3.2	20
11	Oxygen Plasma Treated-Electrospun Polyhydroxyalkanoate Scaffolds for Hydrophilicity Improvement and Cell Adhesion. Polymers, 2021, 13, 1056.	4.5	17
12	Polymer blending or fiber blending: A comparative study using chitosan and poly(ε aprolactone) electrospun fibers. Journal of Applied Polymer Science, 2019, 136, 47191.	2.6	16
13	Extraction of aluminium surface energies from slab calculations: perturbative and non-perturbative approaches. Progress in Surface Science, 2003, 74, 209-217.	8.3	15
14	Customized tracheal design using 3D printing of a polymer hydrogel: influence of UV laser cross-linking on mechanical properties. 3D Printing in Medicine, 2019, 5, 12.	3.1	11
15	Dependence of metal surface properties on the valence-electron density in the stabilized jellium model. Vacuum, 2001, 63, 135-138.	3.5	8
16	Study on the Incorporation of Chitosan Flakes in Electrospun Polycaprolactone Scaffolds. Polymers, 2022, 14, 1496.	4.5	7
17	Using water to control electrospun Polycaprolactone fibre morphology for soft tissue engineering. Journal of Polymer Research, 2019, 26, 1.	2.4	6
18	Evanescent core pseudopotential: Applications to surfaces and clusters. Progress in Surface Science, 1996, 53, 315-322.	8.3	4

#	Article	IF	CITATIONS
19	Metallic slabs: perturbative treatments based on jellium. Progress in Surface Science, 2001, 67, 285-298.	8.3	4
20	Extraction of aluminium surface energies from slab calculations: perturbative and non-perturbative approaches. Progress in Surface Science, 2003, 74, 209-217.	8.3	1
21	The negative ionization of sputtered carbon atoms. Applied Surface Science, 1999, 144-145, 208-211.	6.1	Ο
22	Electrospun mats of biodegradable chitosan-based polyurethane urea. , 2015, , .		0