Ana C Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8478868/publications.pdf

Version: 2024-02-01

		218677	2	233421
78	2,435	26		45
papers	citations	h-index		g-index
80	80	80		3003
00	80	00		3003
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Halloysite clay nanotubes for life sciences applications: From drug encapsulation to bioscaffold. Advances in Colloid and Interface Science, 2018, 257, 58-70.	14.7	148
2	Linalool bioactive properties and potential applicability in drug delivery systems. Colloids and Surfaces B: Biointerfaces, 2018, 171, 566-578.	5.0	139
3	Subcutaneous delivery of monoclonal antibodies: How do we get there?. Journal of Controlled Release, 2018, 286, 301-314.	9.9	138
4	New delivery systems to improve the bioavailability of resveratrol. Expert Opinion on Drug Delivery, 2011, 8, 973-990.	5.0	107
5	Plant-mediated green synthesis of metal-based nanoparticles for dermopharmaceutical and cosmetic applications. International Journal of Pharmaceutics, 2021, 597, 120311.	5 . 2	104
6	Nanotechnology for the development of new cosmetic formulations. Expert Opinion on Drug Delivery, 2019, 16, 313-330.	5.0	103
7	Melanin nanoparticles as a promising tool for biomedical applications– a review. Acta Biomaterialia, 2020, 105, 26-43.	8.3	89
8	Naringenin Nano-Delivery Systems and Their Therapeutic Applications. Pharmaceutics, 2021, 13, 291.	4.5	89
9	Nanotechnology-based formulations for resveratrol delivery: Effects on resveratrol in vivo bioavailability and bioactivity. Colloids and Surfaces B: Biointerfaces, 2019, 180, 127-140.	5.0	82
10	Ethosomes as Nanocarriers for the Development of Skin Delivery Formulations. Pharmaceutical Research, 2021, 38, 947-970.	3. 5	74
11	Naringenin: A potential flavonoid phytochemical for cancer therapy. Life Sciences, 2022, 305, 120752.	4.3	72
12	Nanovehicles for co-delivery of anticancer agents. Drug Discovery Today, 2020, 25, 1416-1430.	6.4	61
13	Emerging role of nanoclays in cancer research, diagnosis, and therapy. Coordination Chemistry Reviews, 2021, 440, 213956.	18.8	56
14	Nanocarriers for resveratrol delivery: Impact on stability and solubility concerns. Trends in Food Science and Technology, 2019, 91, 483-497.	15.1	49
15	Cyclodextrin-based delivery systems for in vivo-tested anticancer therapies. Drug Delivery and Translational Research, 2021, 11, 49-71.	5. 8	46
16	Biomedical potential of clay nanotube formulations and their toxicity assessment. Expert Opinion on Drug Delivery, 2019, 16, 1169-1182.	5.0	44
17	Sonication-Assisted Layer-by-Layer Assembly for Low Solubility Drug Nanoformulation. ACS Applied Materials & Samp; Interfaces, 2015, 7, 11972-11983.	8.0	43
18	Evolution of Hair Treatment and Care: Prospects of Nanotube-Based Formulations. Nanomaterials, 2019, 9, 903.	4.1	42

#	Article	IF	Citations
19	Nanotechnological breakthroughs in the development of topical phytocompounds-based formulations. International Journal of Pharmaceutics, 2019, 572, 118787.	5.2	41
20	Micelleplexes as nucleic acid delivery systems for cancer-targeted therapies. Journal of Controlled Release, 2020, 323, 442-462.	9.9	41
21	Topical Minoxidil-Loaded Nanotechnology Strategies for Alopecia. Cosmetics, 2020, 7, 21.	3.3	38
22	Optimally biosynthesized, PEGylated gold nanoparticles functionalized with quercetin and camptothecin enhance potential anti-inflammatory, anti-cancer and anti-angiogenic activities. Journal of Nanobiotechnology, 2021, 19, 84.	9.1	37
23	Phytochemical-loaded liposomes for anticancer therapy: an updated review. Nanomedicine, 2022, 17, 547-568.	3.3	35
24	Ibuprofen nanocrystals developed by 22 factorial design experiment: A new approach for poorly water-soluble drugs. Saudi Pharmaceutical Journal, 2017, 25, 1117-1124.	2.7	33
25	Subcutaneous delivery of biotherapeutics: challenges at the injection site. Expert Opinion on Drug Delivery, 2019, 16, 143-151.	5.0	31
26	Nano- and microparticle-stabilized Pickering emulsions designed for topical therapeutics and cosmetic applications. International Journal of Pharmaceutics, 2022, 615, 121455.	5.2	31
27	pH-Sensitive Peptide Hydrogels as a Combination Drug Delivery System for Cancer Treatment. Pharmaceutics, 2022, 14, 652.	4.5	27
28	Preclinical developments of natural-occurring halloysite clay nanotubes in cancer therapeutics. Advances in Colloid and Interface Science, 2021, 291, 102406.	14.7	26
29	First-time oral administration of resveratrol-loaded layer-by-layer nanoparticles to rats – a pharmacokinetics study. Analyst, The, 2019, 144, 2062-2079.	3.5	25
30	miR-145-loaded micelleplexes as a novel therapeutic strategy to inhibit proliferation and migration of osteosarcoma cells. European Journal of Pharmaceutical Sciences, 2018, 123, 28-42.	4.0	24
31	Targeting Cancer Via Resveratrol-Loaded Nanoparticles Administration: Focusing on In Vivo Evidence. AAPS Journal, 2019, 21, 57.	4.4	24
32	Sterculia striata gum as a potential oral delivery system for protein drugs. International Journal of Biological Macromolecules, 2020, 164, 1683-1692.	7.5	24
33	Ultrasonication of insulin-loaded microgel particles produced by internal gelation: Impact on particle's size and insulin bioactivity. Carbohydrate Polymers, 2013, 98, 1397-1408.	10.2	23
34	Nanomedicine in osteosarcoma therapy: Micelleplexes for delivery of nucleic acids and drugs toward osteosarcoma-targeted therapies. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 148, 88-106.	4.3	21
35	Multifunctional polymeric micelle-based nucleic acid delivery: Current advances and future perspectives. Applied Materials Today, 2021, 25, 101217.	4.3	21
36	Targeting dendritic cells for the treatment of autoimmune disorders. Colloids and Surfaces B: Biointerfaces, 2017, 158, 237-248.	5.0	20

#	Article	lF	CITATIONS
37	Poly(lactic- co -glycolic acid) (PLGA) matrix implants. , 2018, , 375-402.		20
38	Biomimetic cancer cell membrane-coated nanosystems as next-generation cancer therapies. Expert Opinion on Drug Delivery, 2020, 17, 1515-1518.	5.0	20
39	Comparison of ELISA and HPLC-MS methods for the determination of exenatide in biological and biotechnology-based formulation matrices. Journal of Pharmaceutical Analysis, 2019, 9, 143-155.	5.3	19
40	Nanomaterials in hair care and treatment. Acta Biomaterialia, 2022, 142, 14-35.	8.3	18
41	Nanocarrier-based dermopharmaceutical formulations for the topical management of atopic dermatitis. International Journal of Pharmaceutics, 2022, 618, 121656.	5.2	18
42	Nanocarriers for the topical treatment of psoriasis - pathophysiology, conventional treatments, nanotechnology, regulatory and toxicology. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 176, 95-107.	4.3	17
43	pH Sensitive Pluronic Acid/Agarose-Hydrogels as Controlled Drug Delivery Carriers: Design, Characterization and Toxicity Evaluation. Pharmaceutics, 2022, 14, 1218.	4.5	17
44	Complex Polysaccharide-Based Nanocomposites for Oral Insulin Delivery. Marine Drugs, 2020, 18, 55.	4.6	16
45	Nanoparticles as phytochemical carriers for cancer treatment: News of the last decade. Expert Opinion on Drug Delivery, 2022, 19, 179-197.	5.0	16
46	RNAi-based therapeutics for lung cancer: biomarkers, microRNAs, and nanocarriers. Expert Opinion on Drug Delivery, 2018, 15, 965-982.	5.0	15
47	Micelleplex-based nucleic acid therapeutics: From targeted stimuli-responsiveness to nanotoxicity and regulation. European Journal of Pharmaceutical Sciences, 2020, 153, 105461.	4.0	15
48	Prevention of UV-induced skin cancer in mice by gamma oryzanol-loaded nanoethosomes. Life Sciences, 2021, 283, 119759.	4.3	15
49	Co-Delivery of erlotinib and resveratrol via nanostructured lipid Carriers: A synergistically promising approach for cell proliferation prevention and ROS-Mediated apoptosis activation. International Journal of Pharmaceutics, 2022, 624, 122027.	5.2	15
50	Unleashing the potential of cell membrane-based nanoparticles for COVID-19 treatment and vaccination. Expert Opinion on Drug Delivery, 2021, 18, 1395-1414.	5.0	14
51	Nanotechnology-based sunscreens—a review. Materials Today Chemistry, 2022, 23, 100709.	3.5	13
52	Gut-Thyroid axis: How gut microbial dysbiosis associated with euthyroid thyroid cancer. Journal of Cancer, 2022, 13, 2014-2028.	2.5	13
53	Understanding of Immune Escape Mechanisms and Advances in Cancer Immunotherapy. Journal of Oncology, 2022, 2022, 1-13.	1.3	13
54	Neoplastic Multifocal Skin Lesions: Biology, Etiology, and Targeted Therapies for Nonmelanoma Skin Cancers. Skin Pharmacology and Physiology, 2018, 31, 59-73.	2.5	12

#	Article	IF	Citations
55	Trichilia catigua and Turnera diffusa extracts: In vitro inhibition of tyrosinase, antiglycation activity and effects on enzymes and pathways engaged in the neuroinflammatory process. Journal of Ethnopharmacology, 2021, 271, 113865.	4.1	12
56	Innovative nanocompounds for cutaneous administration of classical antifungal drugs: a systematic review. Journal of Dermatological Treatment, 2019, 30, 617-626.	2.2	11
57	Prevalence of vitamin D deficiency amongst soccer athletes and effects of 8 weeks supplementation. Journal of Sports Medicine and Physical Fitness, 2019, 59, 693-699.	0.7	11
58	Electro-responsive controlled drug delivery from melanin nanoparticles. International Journal of Pharmaceutics, 2020, 588, 119773.	5 . 2	11
59	miR-29b and retinoic acid co-delivery: a promising tool to induce a synergistic antitumoral effect in non-small cell lung cancer cells. Drug Delivery and Translational Research, 2020, 10, 1367-1380.	5 . 8	11
60	Discordant phenotypes in first cousins with UBE3A frameshift mutation., 2004, 127A, 258-262.		10
61	Advance in Methods Studying the Pharmacokinetics of Polyphenols. Current Drug Metabolism, 2014, 15, 96-115.	1.2	10
62	Cytotoxic Evaluation, Molecular Docking, and 2D-QSAR Studies of Dihydropyrimidinone Derivatives as Potential Anticancer Agents. Journal of Oncology, 2022, 2022, 1-25.	1.3	10
63	Layer-by-Layer coated drug-core nanoparticles as versatile delivery platforms. , 2018, , 595-635.		9
64	Sonication-assisted Layer-by-Layer self-assembly nanoparticles for resveratrol delivery. Materials Science and Engineering C, 2019, 105, 110022.	7.3	9
65	Advanced particulate carrier-mediated technologies for nasal drug delivery. Journal of Drug Delivery Science and Technology, 2022, 74, 103569.	3.0	9
66	Nanotechnology-based formulations toward the improved topical delivery of anti-acne active ingredients. Expert Opinion on Drug Delivery, 2021, 18, 1435-1454.	5.0	8
67	Application of nanotechnology in management and treatment of diabetic wounds. Journal of Drug Targeting, 0 , 1 - 21 .	4.4	8
68	Mesoporous silica nanoparticles as drug delivery systems against melanoma., 2018,, 437-466.		4
69	Trichilia catigua and Turnera diffusa phyto-phospholipid nanostructures: Physicochemical characterization and bioactivity in cellular models of induced neuroinflammation and neurotoxicity. International Journal of Pharmaceutics, 2022, 620, 121774.	5.2	4
70	Surface functionalization of PLGA nanoparticles for drug delivery., 2020,, 185-203.		2
71	Layer-by-Layer Assembly for Nanoarchitectonics. , 2019, , 89-121.		1
72	Micelleplexes: A Promising Nanocarrier for the Transport of Genetic Material and Drugs. , 2020, , 267-287.		1

#	Article	IF	CITATIONS
73	Multifokale Neoplasien der Haut: Biologie, Ätiologie und zielgerichtete Therapien von nicht-melanozytÅæm Hautkrebs. Karger Kompass Dermatologie, 2018, 6, 135-146.	0.0	0
74	OBTENÇÃO DE NANOPARTÃCULAS BIODEGRADÃVEIS DE IBUPROFENO ENCAPSULADAS POR "LAYER-BY-L (LBL) SELF-ASSEMBLYâ€⊷ CAMADA POR CAMADA AUTO-ESTRUTURADAS. Visão Acadêmica, 2018, 18, .	AYER	0
75	Monoterpenes-Based Pharmaceuticals: A Review of Applications In Human Health and Drug Delivery Systems. , 2018, , 85-130.		0
76	Nanocrystals of Poorly Water-Soluble Drugs: Production Technologies, Characterization, and Functionalization. , 2018 , , 43 - 66 .		0
77	Microemulsions: Principles, Scope, Methods, and Applications in Transdermal Drug Delivery. , 2019, , 91-118.		0
78	Missivas. Dialogismo literario e interacción sociocultural. HachetetepÉ Revista CientÃfica De EducaciÓn Y ComunicaciÓn, 2020, 1, 44-54.	0.2	0