Daisuke Nagao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8478829/publications.pdf Version: 2024-02-01

DAISLIKE NACAO

#	Article	IF	CITATIONS
1	An experimental study on emulsion polymerization for formation of monodisperse particles smaller than 50Ânm. Colloid and Polymer Science, 2022, 300, 397-405.	1.0	3
2	Surface Characteristics of Antibacterial Polystyrene Nanoparticles Synthesized Using Cationic Initiator and Comonomers. ACS Applied Bio Materials, 2022, 5, 2202-2211.	2.3	5
3	Morphology Control of Photocatalytic Particles for Their Self-Propelled Motion. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2022, 29, 51-55.	0.0	0
4	Pore expanding effect of hydrophobic agent on 100 nm-sized mesoporous silica particles estimated based on Hansen solubility parameters. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 609, 125647.	2.3	7
5	Polyethylenimine-assisted synthesis of hollow silica spheres without shape deformation. Materials Chemistry and Physics, 2021, 262, 124267.	2.0	6
6	Tunability of Interactions between the Core and Shell in Rattle-Type Particles Studied with Liquid-Cell Electron Microscopy. ACS Nano, 2021, 15, 11137-11149.	7.3	7
7	Correlation of Secondary Particle Number with the Debye–Hückel Parameter for Thickening Mesoporous Silica Shells Formed on Spherical Cores. ACS Omega, 2021, 6, 17734-17740.	1.6	2
8	Development of X-ray contrast agents using single nanometer-sized gold nanoparticles and lactoferrin complex and their application in vascular imaging. Colloids and Surfaces B: Biointerfaces, 2021, 203, 111732.	2.5	6
9	A reinforced, high-κ ternary polymer nanocomposite dielectrics of PVDF, barium titanate nanoparticles, and TEMPO-oxidized cellulose nanofibers. Composites Part C: Open Access, 2021, 5, 100163.	1.5	6
10	Multipoint Lock-and-Key Assembly of Particles with Anisotropic Dents toward Modeling Rigid Macromolecules in a Colloidal Scale. Langmuir, 2021, 37, 9451-9456.	1.6	1
11	Effect of silica-coating on crystal structure and magnetic properties of metallic nickel particles. Advanced Powder Technology, 2021, 32, 4177-4185.	2.0	8
12	Preparation and properties of silica-coated metallic nickel particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127524.	2.3	7
13	Double-Inverse-Opal-Structured Particle Assembly as a Novel Immobilized Photocatalytic Material. Materials, 2021, 14, 28.	1.3	7
14	Polymer-coating of photocatalytic particles to prevent sintering in their calcination process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 599, 124782.	2.3	8
15	Observation of Undamped 3D Brownian Motion of Nanoparticles Using Liquidâ€Cell Scanning Transmission Electron Microscopy. Particle and Particle Systems Characterization, 2020, 37, 2000003.	1.2	18
16	Compartmentalization of gold nanoparticle clusters in hollow silica spheres and their assembly induced by an external electric field. Journal of Colloid and Interface Science, 2020, 566, 202-210.	5.0	15
17	Three-dimensional periodic structures of gold nanoclusters in the interstices of sub-100†nm polymer particles toward surface-enhanced Raman scattering. Advanced Powder Technology, 2019, 30, 2957-2963.	2.0	6
18	Ellipsoidal Artificial Melanin Particles as Building Blocks for Biomimetic Structural Coloration. Langmuir, 2019, 35, 5574-5580.	1.6	30

#	Article	IF	CITATIONS
19	Characterization on magnetophoretic velocity of the cluster of submicron-sized composite particles applicable to magnetic separation and purification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568, 141-146.	2.3	4
20	Depletion-interaction-driven assembly of golf ball-like particles for development of colloidal macromolecules. Journal of Colloid and Interface Science, 2019, 534, 81-87.	5.0	13
21	Uniform formation of mesoporous silica shell on micron-sized cores in the presence of hydrocarbon used as a swelling agent. Journal of Sol-Gel Science and Technology, 2018, 85, 539-545.	1.1	5
22	The plasmonic properties of gold nanoparticle clusters formed <i>via</i> applying an AC electric field. Soft Matter, 2018, 14, 3372-3377.	1.2	12
23	Unary- or binary-plasmonic nanoparticle-assemblies formed within hollow silica particles with a surfactant-assisted method. Materials Letters, 2018, 221, 256-259.	1.3	2
24	Permittivity enhancement of transparent poly(vinylidene fluoride) nanocomposite films by loading titania-coated barium titanate nanoparticles. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	2
25	External-Stimuli-Assisted Control over Assemblies of Plasmonic Metals. Materials, 2018, 11, 794.	1.3	11
26	Yolk/Shell Colloidal Crystals Incorporating Movable Cores with Their Motion Controlled by an External Electric Field. Langmuir, 2017, 33, 296-302.	1.6	18
27	Phosphor-free silica-coating of monodisperse cores for dual functionalization with luminescent and mesoporous shell. Microporous and Mesoporous Materials, 2017, 241, 366-371.	2.2	2
28	Optimized Thermal Treatment for Preparation of Double Inverse Opals Incorporating Movable Cores. Journal of Chemical Engineering of Japan, 2017, 50, 64-67.	0.3	4
29	Imprinting Dimples on Narrowly Dispersed Polymeric Spheres by Heterocoagulation between Hard Polymer Particles and Soft Oil Droplets. Langmuir, 2016, 32, 11600-11605.	1.6	11
30	Luminescence enhancement of ZnO-poly(methylmethacrylate) nanocomposite films by incorporation of crystalline BaTiO 3 nanoparticles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 211, 173-177.	1.7	5
31	Low-temperature synthesis of water-dispersible magnetic composite particles with high monodispersity. Colloid and Polymer Science, 2016, 294, 2079-2085.	1.0	3
32	Synthesis of phosphor-free luminescent, monodisperse, mesoporous silica nanoparticles in the co-presence of double- and single-chain cationic surfactants. Advanced Powder Technology, 2016, 27, 448-453.	2.0	7
33	One Pot Soap-Free Synthesis of Fluorescent, Magnetic Composite Particles with High Monodispersity. Journal of Chemical Engineering of Japan, 2015, 48, 584-587.	0.3	2
34	Fabrication of Double Inverse Opals via Binary Colloidal Crystals of Inorganic-Organic Core-Shell Particles and Inorganic Nanoparticles. Journal of Chemical Engineering of Japan, 2015, 48, 933-936.	0.3	4
35	Chemical bonding heterocoagulation of nanoparticles onto polymeric spheres by two-step addition of polymerizable coupling agent. Colloid and Polymer Science, 2015, 293, 2095-2100.	1.0	5
36	Transparent, highly dielectric poly(vinylidene fluoride) nanocomposite film homogeneously incorporating BaTiO3 nanoparticles with fluoroalkylsilane surface modifier. European Polymer Journal, 2015, 66, 528-532.	2.6	25

#	Article	IF	CITATIONS
37	Quantitative understanding of the self-sharpening of growing polymer particle size distributions in soap-free emulsion polymerization. Polymer, 2015, 68, 176-182.	1.8	16
38	Fabrication of highly refractive, heat-resistive barium titanate nanocomposite films using a blending route. Materials Today Communications, 2015, 4, 233-237.	0.9	2
39	Rattle-Type Colloidal Crystals Composed of Spherical Hollow Particles Containing an Anisotropic, Movable Core. Langmuir, 2015, 31, 5306-5310.	1.6	12
40	Magnetic Field Aligned Assembly of Nonmagnetic Composite Dumbbells in Nanoparticle-Based Aqueous Ferrofluid. Langmuir, 2015, 31, 5590-5595.	1.6	13
41	Membrane Surface-Enhanced Raman Spectroscopy for Sensitive Detection of Molecular Behavior of Lipid Assemblies. Analytical Chemistry, 2015, 87, 4772-4780.	3.2	38
42	Environmentally adaptable pathway to emulsion polymerization for monodisperse polymer nanoparticle synthesis. Polymer, 2015, 77, 64-69.	1.8	21
43	Miniaturization of anisotropic composite particles incorporating a silica particle smaller than 100Ânm. Colloid and Polymer Science, 2014, 292, 449-454.	1.0	6
44	Advanced soap-free emulsion polymerization for highly pure, micron-sized, monodisperse polymer particles. Polymer, 2014, 55, 535-539.	1.8	56
45	Dispersed-Nanoparticle Loading Synthesis for Monodisperse Au-Titania Composite Particles and Their Crystallization for Highly Active UV and Visible Photocatalysts. Langmuir, 2014, 30, 7244-7250.	1.6	14
46	Ceria nanoparticle vesicles formed in sodium oleate aqueous solution with mesoporous silica coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 638-642.	2.3	4
47	Advanced synthesis for monodisperse polymer nanoparticles in aqueous media with sub-millimolar surfactants. Polymer, 2014, 55, 2772-2779.	1.8	30
48	Synthesis of monodisperse composite poly(N-isopropylacrylamide) microgels incorporating dispersive Pt nanoparticles with high contents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 446, 134-138.	2.3	5
49	Fabrication of highly refractive bariumâ€titanateâ€incorporated polyimide nanocomposite films with high permittivity and thermal stability. Polymer International, 2013, 62, 141-145.	1.6	31
50	Colloidal Polarization of Yolk/Shell Particles by Reconfiguration of Inner Cores Responsive to an External Magnetic Field. Langmuir, 2013, 29, 9004-9009.	1.6	29
51	A unified mechanism to quantitatively understand silica particle formation from tetraethyl orthosilicate in batch and semi-batch processes. Journal of Colloid and Interface Science, 2013, 394, 63-68.	5.0	5
52	Fabrication of highly refractive BaTiO3 nanocomposite films using heat resistant polymer as matrix. European Polymer Journal, 2013, 49, 3455-3459.	2.6	11
53	Preparation of various Janus composite particles with two components differently combined. Colloid and Polymer Science, 2013, 291, 137-142.	1.0	9
54	Novel Mini-Reactor of Silicone Oil Droplets for Synthesis of Morphology-Controlled Polymer Particles. Langmuir, 2012, 28, 17642-17646.	1.6	14

#	Article	IF	CITATIONS
55	Preparation of oil-containing, polymeric particles having a single depression with various shapes. Soft Matter, 2012, 8, 4652.	1.2	15
56	Magnetoresponsive, anisotropic composite particles reversibly changing their chain lengths by a combined external field. Soft Matter, 2012, 8, 11152.	1.2	14
57	Direct observation of micron-sized silica rattles to demonstrate movability of inner spheres in the silica compartment suspended in aqueous media. Soft Matter, 2012, 8, 3442.	1.2	15
58	Directed Orientation of Asymmetric Composite Dumbbells by Electric Field Induced Assembly. Langmuir, 2012, 28, 6546-6550.	1.6	40
59	Luminescence enhancement of Eu-doped amorphous barium titanate films with crystalline BaTiO3 nanoparticle incorporation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 409, 94-97.	2.3	5
60	Anionic liposome template synthesis of raspberry-like hollow silica particle under ambient conditions with basic catalyst. Colloids and Surfaces B: Biointerfaces, 2012, 92, 372-376.	2.5	11
61	Preparation of Asymmetrically Nanoparticle-Supported, Monodisperse Composite Dumbbells by Protruding a Smooth Polymer Bulge from Rugged Spheres. Langmuir, 2011, 27, 13302-13307.	1.6	34
62	Development of High-throughput Screening Reactor Using Microwave Heating and Screening of Solid Catalysts for Friedel-Crafts Reaction. Journal of the Japan Petroleum Institute, 2011, 54, 30-35.	0.4	2
63	Fabrication of highly refractive, transparent BaTiO ₃ /poly(methyl methacrylate) composite films with high permittivities. Polymer International, 2011, 60, 1180-1184.	1.6	35
64	Mesoporous NiO–Al2O3 catalyst for high pressure partial oxidation of methane to syngas. Applied Catalysis A: General, 2011, 392, 86-92.	2.2	44
65	Effect of NiO content in mesoporous NiO–Al2O3 catalysts for high pressure partial oxidation of methane to syngas. Applied Catalysis A: General, 2011, 395, 129-137.	2.2	58
66	Low temperature fabrication of barium titanate hybrid films and their dielectric properties. Thin Solid Films, 2011, 519, 1971-1975.	0.8	8
67	Fabrication of BaTiO ₃ –Y:Eu composite micropatterns by combination of laser induced pyrolysis method and nanocrystalline seeding technique. Surface Engineering, 2011, 27, 410-413.	1.1	4
68	Synthesis of Hollow Asymmetrical Silica Dumbbells with a Movable Inner Core. Langmuir, 2010, 26, 5208-5212.	1.6	59
69	Soap-free synthesis of highly monodisperse magnetic polymer particles with amphoteric initiator. Colloid and Polymer Science, 2010, 288, 55-61.	1.0	21
70	A durable PtRu/C catalyst with a thin protective layer for direct methanol fuel cells. Journal of Colloid and Interface Science, 2010, 351, 580-583.	5.0	15
71	Fabrication of barium titanate nanoparticlesâ€epoxy resin composite films and their dielectric properties. Polymer Composites, 2010, 31, 1179-1183.	2.3	18
72	Electrolyte-Added One-Pot Synthesis for Producing Monodisperse, Micrometer-Sized Silica Particles up to 7 1¼m. Langmuir, 2010, 26, 7512-7515.	1.6	49

#	Article	IF	CITATIONS
73	Repetitive Heterocoagulation of Oppositely Charged Particles for Enhancement of Magnetic Nanoparticle Loading into Monodisperse Silica Particles. Langmuir, 2010, 26, 4207-4211.	1.6	18
74	Fabrication of BaTiO3 Micropatterns by a Combination of Laser-Induced Pyrolysis Method and Nano-Crystalline Seeding Technique and Their Dielectric Properties. Journal of Chemical Engineering of Japan, 2010, 43, 132-139.	0.3	1
75	Size control of polystyrene nodules formed on silica particles in soap-free emulsion polymerization with amphoteric initiator. Colloid and Polymer Science, 2009, 287, 1051-1056.	1.0	10
76	Silica coating of Co–Pt alloy nanoparticles prepared in the presence of poly(vinylpyrrolidone). Journal of Nanoparticle Research, 2009, 11, 1787-1794.	0.8	11
77	Fabrication of barium titanate nanoparticlesâ€polymethylmethacrylate composite films and their dielectric properties. Polymer Engineering and Science, 2009, 49, 1069-1075.	1.5	50
78	Preparation and catalytic use of silica-polymer core–shell microspheres with imidazolium-styrene copolymer shells. Catalysis Communications, 2009, 11, 227-231.	1.6	14
79	Fabrication of Monodispersed, Multilayered Silica-Y:Eu-Silica Core-Shell Particles and Their Photonic Crystals. Journal of Chemical Engineering of Japan, 2009, 42, 47-50.	0.3	3
80	Synthesis of spherical submicron-sized magnetite/silica nanocomposite particles. Journal of Sol-Gel Science and Technology, 2008, 45, 35-41.	1.1	35
81	Synthesis and properties of Co–Pt alloy silica core-shell particles. Journal of Sol-Gel Science and Technology, 2008, 47, 16-22.	1.1	11
82	Preparation of composite particles with magnetic silica core and fluorescent polymer shell. Colloid and Polymer Science, 2008, 286, 959-964.	1.0	21
83	Synthesis of Anisotropic Polymer Particles with Soapâ€Free Emulsion Polymerization in the Presence of a Reactive Silane Coupling Agent. Macromolecular Rapid Communications, 2008, 29, 1484-1488.	2.0	72
84	Single- and multi-layered patterns of polystyrene and silica particles assembled with a simple dip-coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317, 722-729.	2.3	29
85	Fabrication of Eu-coated silica particles by homogeneous precipitation method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 326, 109-114.	2.3	13
86	Synthesis of Highly Monodisperse Particles Composed of a Magnetic Core and Fluorescent Shell. Langmuir, 2008, 24, 9804-9808.	1.6	70
87	Influence of Different Parameters on the Particle and Crystallite Sizes of Barium Titanate Prepared by an Alkoxide Sol-Gel Method. Journal of the Ceramic Society of Japan, 2007, 115, 661-666.	0.5	5
88	Direct Coating of Particles by a Liquid Phase Process. Current Nanoscience, 2007, 3, 222-240.	0.7	7
89	Deposition of Gold Nanoparticles on Polystyrene Spheres by Electroless Metal Plating Technique. Journal of Physics: Conference Series, 2007, 61, 582-586.	0.3	19
90	Effect of ultrasonic irradiation on carbon-supported Pt–Ru nanoparticles prepared at high metal concentration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302, 623-627.	2.3	30

#	Article	IF	CITATIONS
91	Preparation of multilayered silica–Gd–silica core-shell particles and their magnetic resonance images. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 308, 14-19.	2.3	34
92	Multiformity of particle arrays assembled with a simple dip-coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 311, 26-31.	2.3	22
93	Agitation requirement for synthesis of micron-sized monodisperse polymer particles in soap-free polymerization method. Colloid and Polymer Science, 2007, 285, 581-586.	1.0	2
94	Direct micropatterning of high dielectric BaTiO3 films by laser-induced pyrolysis with a nano-crystalline seeding technique. Applied Surface Science, 2007, 253, 5293-5301.	3.1	4
95	Preparation of Micrometer-Sized Polymer Particles with Control of Initiator Dissociation during Soap-Free Emulsion Polymerization. Langmuir, 2006, 22, 10958-10962.	1.6	24
96	Synthesis of Pt–Ru nanoparticles with a bifunctional stabilizer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 273, 97-100.	2.3	12
97	Preparation of highly monodisperse poly(methyl methacrylate) particles incorporating fluorescent rhodamine 6G for colloidal crystals. Journal of Colloid and Interface Science, 2006, 298, 232-237.	5.0	51
98	Synthesis of Submicron-Sized Titania-Coated Silica Particles with a Sol-Gel Method and Their Application to Colloidal Photonic Crystals. Journal of Sol-Gel Science and Technology, 2006, 38, 91-95.	1.1	24
99	Preparation of silica-coated Co–Pt alloy nanoparticles. Materials Letters, 2006, 60, 2046-2049.	1.3	19
100	X-Ray Absorption of Gold Nanoparticles with Thin Silica Shell. Journal of Nanoscience and Nanotechnology, 2006, 6, 3503-3506.	0.9	17
101	Preparation of fluorescent polymer particles by emulsion polymerization. E-Polymers, 2005, 5, .	1.3	1
102	Silica coating of silver nanoparticles using a modified Stöber method. Journal of Colloid and Interface Science, 2005, 283, 392-396.	5.0	314
103	Preparation and colloidal stability of monodisperse magnetic polymer particles. Journal of Colloid and Interface Science, 2005, 289, 419-426.	5.0	47
104	Deposition of gold nanoparticles on silica spheres by electroless metal plating technique. Journal of Colloid and Interface Science, 2005, 283, 601-604.	5.0	52
105	Synthesis of submicrometer-sized titania spherical particles with a sol–gel method and their application to colloidal photonic crystals. Journal of Colloid and Interface Science, 2005, 291, 162-168.	5.0	89
106	Solvent Effects on Particle Formation in Hydrolysis of Tetraethyl Orthosilicate. Journal of Sol-Gel Science and Technology, 2005, 35, 197-201.	1.1	22
107	Effects of Impeller Speed on Synthesis of Monodisperse Silica Particles. Kagaku Kogaku Ronbunshu, 2005, 31, 200-203.	0.1	0
108	Fabrication of Sub-Micron Sized Titania Hollow Spheres. Journal of Chemical Engineering of Japan, 2004, 37, 912-914.	0.3	6

#	Article	IF	CITATIONS
109	Synthesis of Silica Particles in the Hydrolysis of Tetraethyl Orthosilicate with Amine Catalysts. Journal of Chemical Engineering of Japan, 2004, 37, 905-907.	0.3	15
110	Fabrication of Mono- and Multi-Layers of Submicron-Sized Spheres by a Dip-Coating Technique and Their Transmittance Property. Journal of Chemical Engineering of Japan, 2004, 37, 614-621.	0.3	12
111	Fabrication of sub-micrometer-sized jingle bell-shaped hollow spheres from multilayered core–shell particles. Journal of Colloid and Interface Science, 2004, 279, 281-283.	5.0	16
112	Particle formation in the hydrolysis of tetraethyl orthosilicate in pH buffer solution. Journal of Colloid and Interface Science, 2004, 279, 143-149.	5.0	49
113	Preparation of Micrometer-Sized Poly(methyl methacrylate) Particles with Amphoteric Initiator in Aqueous Media. Langmuir, 2004, 20, 7948-7951.	1.6	30
114	Influence of Ammonia Concentration on Particle Size Distributions in Seeded Reaction of Hydrolysis and Condensation of Tetraethyl Orthosilicate. Kagaku Kogaku Ronbunshu, 2003, 29, 546-550.	0.1	1
115	A Generalized Model for Describing Particle Formation in the Synthesis of Monodisperse Oxide Particles Based on the Hydrolysis and Condensation of Tetraethyl Orthosilicate. Journal of Colloid and Interface Science, 2000, 232, 102-110.	5.0	50
116	Electrostatic Interactions in Formation of Particles from Tetraethyl Orthosilicate Journal of Chemical Engineering of Japan, 2000, 33, 468-473.	0.3	29