Ewelina Ratajczak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8478792/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Somatic Embryogenesis of Norway Spruce and Scots Pine: Possibility of Application in Modern Forestry. Forests, 2022, 13, 155.	0.9	11
2	Mitochondrial Peroxiredoxin-IIF (PRXIIF) Activity and Function during Seed Aging. Antioxidants, 2022, 11, 1226.	2.2	7
3	Photochemistry differs between male and female Juniperus communis L. independently of nutritional availability. Trees - Structure and Function, 2021, 35, 27-42.	0.9	9
4	Climate change affects seed aging? Initiation mechanism and consequences of loss of forest tree seed viability. Trees - Structure and Function, 2021, 35, 1099-1108.	0.9	17
5	Relationship between mitochondrial changes and seed aging as a limitation of viability for the storage of beech seed (<i>Fagus sylvatica</i> L.). PeerJ, 2021, 9, e10569.	0.9	9
6	Activation of antioxidative and detoxificative systems in Brassica juncea L. plants against the toxicity of heavy metals. Scientific Reports, 2021, 11, 22345.	1.6	10
7	Somatic Embryo Yield and Quality From Norway Spruce Embryogenic Tissue Proliferated in Suspension Culture. Frontiers in Plant Science, 2021, 12, 791549.	1.7	6
8	Can Forest Trees Cope with Climate Change?—Effects of DNA Methylation on Gene Expression and Adaptation to Environmental Change. International Journal of Molecular Sciences, 2021, 22, 13524.	1.8	7
9	Changes in Proline Levels during Seed Development of Orthodox and Recalcitrant Seeds of Genus Acer in a Climate Change Scenario. Forests, 2020, 11, 1362.	0.9	9
10	Different Roles of Auxins in Somatic Embryogenesis Efficiency in Two Picea Species. International Journal of Molecular Sciences, 2020, 21, 3394.	1.8	31
11	Oxidation processes related to seed storage and seedling growth of Malus sylvestris, Prunus avium and Prunus padus. PLoS ONE, 2020, 15, e0234510.	1.1	8
12	Adaptation of Forest Trees to Rapidly Changing Climate. Forests, 2020, 11, 123.	0.9	42
13	What Do We Know About the Genetic Basis of Seed Desiccation Tolerance and Longevity?. International Journal of Molecular Sciences, 2020, 21, 3612.	1.8	21
14	Differences in stress defence mechanisms in germinating seeds of Pinus sylvestris exposed to various lead chemical forms. PLoS ONE, 2020, 15, e0238448.	1.1	6
15	The Occurrence of Peroxiredoxins and Changes in Redox State in Acer platanoides and Acer pseudoplatanus During Seed Development. Journal of Plant Growth Regulation, 2019, 38, 298-314.	2.8	15
16	Insight into the Phytoremediation Capability of Brassica juncea (v. Malopolska): Metal Accumulation and Antioxidant Enzyme Activity. International Journal of Molecular Sciences, 2019, 20, 4355.	1.8	29
17	Reactive Oxygen Species as Potential Drivers of the Seed Aging Process. Plants, 2019, 8, 174.	1.6	118
18	Regulation of thiol metabolism as a factor that influences the development and storage capacity of beech seeds. Journal of Plant Physiology, 2019, 239, 61-70.	1.6	11

Ewelina Ratajczak

#	Article	IF	CITATIONS
19	Mitochondria Are Important Determinants of the Aging of Seeds. International Journal of Molecular Sciences, 2019, 20, 1568.	1.8	47
20	The effect of a doubled glutathione level on parameters affecting the germinability of recalcitrant Acer saccharinum seeds during drying. Journal of Plant Physiology, 2018, 223, 72-83.	1.6	25
21	Photochemistry and Antioxidative Capacity of Female and Male Taxus baccata L. Acclimated to Different Nutritional Environments. Frontiers in Plant Science, 2018, 9, 742.	1.7	24
22	Regulatory redox state in tree seeds. Acta Societatis Botanicorum Poloniae, 2017, 86, .	0.8	1
23	Effects of abscisic acid and an osmoticum on the maturation, starch accumulation and germination of Picea spp. somatic embryos. Acta Physiologiae Plantarum, 2016, 38, 1.	1.0	19
24	Multiple Subcellular Localizations of Dehydrin-like Proteins in the Embryonic Axes of Common Beech (Fagus sylvatica L.) Seeds During Maturation and Dry Storage. Journal of Plant Growth Regulation, 2015, 34, 137-149.	2.8	10
25	The production, localization and spreading of reactive oxygen species contributes to the low vitality of long-term stored common beech (Fagus sylvatica L.) seeds. Journal of Plant Physiology, 2015, 174, 147-156.	1.6	59
26	Age-related changes in protein metabolism of beech (Fagus sylvatica L.) seeds during alleviation of dormancy and in the early stage of germination. Plant Physiology and Biochemistry, 2015, 94, 114-121.	2.8	6
27	The role of oxidative stress in determining the level of viability of black poplar (Populus nigra) seeds stored at different temperatures. Functional Plant Biology, 2015, 42, 630.	1.1	14
28	Strategies utilized by trophically diverse fungal species for Pinus sylvestris root colonization. Tree Physiology, 2014, 34, 73-86.	1.4	8
29	Factors influencing the storability of Fagus sylvatica L. seeds after release from dormancy. Plant Growth Regulation, 2014, 72, 17-27.	1.8	12
30	The involvement of the mitochondrial peroxiredoxin PRXIIF in defining physiological differences between orthodox and recalcitrant seeds of two Acer species. Functional Plant Biology, 2013, 40, 1005.	1,1	13
31	The protective role of selenium in recalcitrant Acer saccharium L. seeds subjected to desiccation. Journal of Plant Physiology, 2011, 168, 220-225.	1.6	61
32	ROS production and antioxidative system activity in embryonic axes of Quercus robur seeds under different desiccation rate conditions. Acta Physiologiae Plantarum, 2011, 33, 2219-2227.	1.0	26
33	Ascorbate and glutathione metabolism during development and desiccation of beech (Fagus sylvatica) Tj ETQq1 \therefore	1 0.78431 1.8	.4 _. gBT /Over
34	Non-reducing sugar levels in beech (Fagus sylvatica) seeds as related to withstanding desiccation and storage. Journal of Plant Physiology, 2009, 166, 1381-1390.	1.6	30
35	Ascorbate and glutathione metabolism during development and desiccation of orthodox and recalcitrant seeds of the genus Acer. Functional Plant Biology, 2007, 34, 601.	1.1	47
36	Age-related biochemical changes during storage of beech (Fagus sylvatica L.) seeds. Seed Science Research, 2007, 17, 45-53.	0.8	73

#	Article	IF	CITATIONS
37	Antioxidative response of ascorbate–glutathione pathway enzymes and metabolites to desiccation of recalcitrant Acer saccharinum seeds. Journal of Plant Physiology, 2006, 163, 1259-1266.	1.6	79
38	Decrease in beech (Fagus sylvatica) seed viability caused by temperature and humidity conditions as related to membrane damage and lipid composition. Acta Physiologiae Plantarum, 2005, 27, 3-12.	1.0	25
39	Production and scavenging of reactive oxygen species in Fagus sylvatica seeds during storage at varied temperature and humidity. Journal of Plant Physiology, 2005, 162, 873-885.	1.6	113
40	Growth regulators and guaiacol peroxidase activity during the induction phase of somatic embryogenesis in Picea species. Dendrobiology, 0, 69, 77-86.	0.6	5
41	Effects of spermidine on germination of Salix spp. after storage under controlled conditions. Dendrobiology, 0, 87, 137-148.	0.6	0

Exogenous seed treatment with proline and its consequences to Norway spruce (Picea abies (L.) H.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5