
Nicolas Bernet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8478742/publications.pdf Version: 2024-02-01

NICOLAS REDNET

#	Article	IF	CITATIONS
1	Chicken manure and wheat straw co-digestion in batch leach bed reactors: optimization of the start-up conditions. Biomass Conversion and Biorefinery, 2023, 13, 10923-10933.	4.6	4
2	Circular Economy Applied to Organic Residues and Wastewater: Research Challenges. Waste and Biomass Valorization, 2022, 13, 1267-1276.	3.4	26
3	Microbial community redundance in biomethanation systems lead to faster recovery of methane production rates after starvation. Science of the Total Environment, 2022, 804, 150073.	8.0	12
4	Screening and Application of Ligninolytic Microbial Consortia to Enhance Aerobic Degradation of Solid Digestate. Microorganisms, 2022, 10, 277.	3.6	2
5	Conditions for efficient alkaline storage of cover crops for biomethane production. Bioresource Technology, 2022, 348, 126722.	9.6	5
6	Effects of successive microwave and enzymatic treatments on the release of p-hydroxycinnamic acids from two types of grass biomass. Biochemical Engineering Journal, 2022, 182, 108434.	3.6	1
7	Mechanisms underlying Clostridium pasteurianum's metabolic shift when grown with Geobacter sulfurreducens. Applied Microbiology and Biotechnology, 2022, 106, 865-876.	3.6	3
8	Enhanced Fermentative Hydrogen Production from Food Waste in Continuous Reactor after Butyric Acid Treatment. Energies, 2022, 15, 4048.	3.1	4
9	Co-ensiling and field wilting investigated as preparation methods for the ensiling of a wet harvested catch crop for biomethane production. Renewable Energy, 2022, 195, 1230-1237.	8.9	1
10	Populational and metabolic shifts induced by acetate, butyrate and lactate in dark fermentation. International Journal of Hydrogen Energy, 2022, 47, 28385-28398.	7.1	4
11	Glucose electro-fermentation with mixed cultures: A key role of the Clostridiaceae family. International Journal of Hydrogen Energy, 2021, 46, 1694-1704.	7.1	15
12	Robust operation through effluent recycling for hydrogen production from the organic fraction of municipal solid waste. Bioresource Technology, 2021, 319, 124196.	9.6	18
13	A vision of European biogas sector development towards 2030: Trends and challenges. Journal of Cleaner Production, 2021, 287, 125065.	9.3	81
14	Modeling of interspecies electron transfer in anaerobic microbial communities. Current Opinion in Biotechnology, 2021, 67, 49-57.	6.6	21
15	Evaluation of chemical-free microwave pretreatment on methane yield of two grass biomass with contrasted parietal content. Energy Conversion and Management, 2021, 229, 113746.	9.2	5
16	Recirculation of solid digestate to enhance energy efficiency of biogas plants: Strategies, conditions and impacts. Energy Conversion and Management, 2021, 231, 113759.	9.2	12
17	Long term alkaline storage and pretreatment process of cover crops for anaerobic digestion. Bioresource Technology, 2021, 330, 124986.	9.6	7
18	Mixotrophic Growth of Chlorella sorokiniana on Acetate and Butyrate: Interplay Between Substrate, C:N Ratio and pH. Frontiers in Microbiology, 2021, 12, 703614.	3.5	20

#	Article	IF	CITATIONS
19	Decoupling thermal and non-thermal effects of the microwaves for lignocellulosic biomass pretreatment. Energy Conversion and Management, 2020, 203, 112220.	9.2	55
20	Bioaugmentation enhances dark fermentative hydrogen production in cultures exposed to short-term temperature fluctuations. Applied Microbiology and Biotechnology, 2020, 104, 439-449.	3.6	18
21	Assessment of fungal and thermo-alkaline post-treatments of solid digestate in a recirculation scheme to increase flexibility in feedstocks supply management of biogas plants. Renewable Energy, 2020, 149, 641-651.	8.9	15
22	Mitigating the variability of hydrogen production in mixed culture through bioaugmentation with exogenous pure strains. International Journal of Hydrogen Energy, 2020, 45, 2617-2626.	7.1	12
23	Standardized protocol for determination of biohydrogen potential. MethodsX, 2020, 7, 100754.	1.6	14
24	The impact of biogas digestate typology on nutrient recovery for plant growth: Accessibility indicators for first fertilization prediction. Waste Management, 2020, 117, 18-31.	7.4	15
25	Biomethanation processes: new insights on the effect of a high H2 partial pressure on microbial communities. Biotechnology for Biofuels, 2020, 13, 141.	6.2	45
26	Temperature and Inoculum Origin Influence the Performance of Ex-Situ Biological Hydrogen Methanation. Molecules, 2020, 25, 5665.	3.8	20
27	Role of indigenous bacteria in dark fermentation of organic substrates. Bioresource Technology, 2020, 313, 123665.	9.6	33
28	Biogas sequestration from the headspace of a fermentative system enhances hydrogen production rate and yield. International Journal of Hydrogen Energy, 2020, 45, 11011-11023.	7.1	18
29	Novel Outlook in Microbial Ecology: Nonmutualistic Interspecies Electron Transfer. Trends in Microbiology, 2020, 28, 245-253.	7.7	14
30	Mixotrophic growth of microalgae on volatile fatty acids is determined by their undissociated form. Algal Research, 2020, 47, 101870.	4.6	32
31	Opportunities for Hydrogen Production from Urban/Industrial Wastewater in Bioelectrochemical Systems. , 2020, , 225-243.		1
32	Anaerobic treatment of sulfate-rich wastewaters: process modeling and control. , 2020, , 277-317.		4
33	Addition of biochar and trace elements in the form of industrial FeCl ₃ to stabilize anaerobic digestion of food waste: dosage optimization and longâ€ŧerm study. Journal of Chemical Technology and Biotechnology, 2019, 94, 505-515.	3.2	18
34	Glucose electro-fermentation as main driver for efficient H2-producing bacteria selection in mixed cultures. International Journal of Hydrogen Energy, 2019, 44, 2230-2238.	7.1	24
35	Improvement of biohydrogen production from glycerol in micro-oxidative environment. International Journal of Hydrogen Energy, 2019, 44, 17802-17812.	7.1	12
36	A standardized biohydrogen potential protocol: An international round robin test approach. International Journal of Hydrogen Energy, 2019, 44, 26237-26247.	7.1	23

#	Article	IF	CITATIONS
37	Behavior of two-chamber microbial electrochemical systems started-up with different ion-exchange membrane separators. Bioresource Technology, 2019, 278, 279-286.	9.6	29
38	Enhancement of mass transfer conditions to increase the productivity and efficiency of dark fermentation in continuous reactors. Fuel, 2019, 254, 115648.	6.4	21
39	Bioelectrochemical Systems for the Valorization of Organic Residues. , 2019, , 511-534.		3
40	Impacts of short-term temperature fluctuations onÂbiohydrogen production and resilience ofÂthermophilic microbial communities. International Journal of Hydrogen Energy, 2019, 44, 8028-8037.	7.1	8
41	Soft Microwave Pretreatment to Extract P-Hydroxycinnamic Acids from Grass Stalks. Molecules, 2019, 24, 3885.	3.8	7
42	Enhancement of corn stover conversion to carboxylates by extrusion and biotic triggers in solid-state fermentation. Applied Microbiology and Biotechnology, 2019, 103, 489-503.	3.6	7
43	Effect of ammonium, electron donor and sulphate transient feeding conditions on sulphidogenesis in sequencing batch bioreactors. Bioresource Technology, 2019, 276, 288-299.	9.6	0
44	Basics of Bio-hydrogen Production by Dark Fermentation. Green Energy and Technology, 2018, , 199-220.	0.6	21
45	Methanosarcina plays a main role during methanogenesis of high-solids food waste and cardboard. Waste Management, 2018, 76, 423-430.	7.4	38
46	Hydrogen metabolic patterns driven by Clostridium-Streptococcus community shifts in a continuous stirred tank reactor. Applied Microbiology and Biotechnology, 2018, 102, 2465-2475.	3.6	42
47	Biological pretreatments of biomass for improving biogas production: an overview from lab scale to full-scale. Renewable and Sustainable Energy Reviews, 2018, 90, 583-604.	16.4	108
48	Addition of granular activated carbon and trace elements to favor volatile fatty acid consumption during anaerobic digestion of food waste. Bioresource Technology, 2018, 260, 157-168.	9.6	155
49	Cardboard proportions and total solids contents as driving factors in dry co-fermentation of food waste. Bioresource Technology, 2018, 248, 229-237.	9.6	19
50	Electroâ€fermentation triggering population selection in mixed ulture glycerol fermentation. Microbial Biotechnology, 2018, 11, 74-83.	4.2	58
51	Pretreatment of food waste for methane and hydrogen recovery: A review. Bioresource Technology, 2018, 249, 1025-1039.	9.6	232
52	Microbial Ecology of Anodic Biofilms: From Species Selection to Microbial Interactions. , 2018, , 63-85.		3
53	High biomass density promotes density-dependent microbial growth rate. Biochemical Engineering Journal, 2018, 130, 66-75.	3.6	9
54	On the actual anode area that contributes to the current density produced by electroactive biofilms. Electrochimica Acta, 2018, 259, 395-401.	5.2	8

#	Article	IF	CITATIONS
55	Co-ensiling as a new technique for long-term storage of agro-industrial waste with low sugar content prior to anaerobic digestion. Waste Management, 2018, 71, 147-155.	7.4	40
56	Understanding biomass recalcitrance in grasses for their efficient utilization as biorefinery feedstock. Reviews in Environmental Science and Biotechnology, 2018, 17, 707-748.	8.1	58
57	Microbial anodic consortia fed with fermentable substrates in microbial electrolysis cells: Significance of microbial structures. Bioelectrochemistry, 2018, 123, 219-226.	4.6	30
58	The environmental biorefinery: state-of-the-art on the production of hydrogen and value-added biomolecules in mixed-culture fermentation. Green Chemistry, 2018, 20, 3159-3179.	9.0	109
59	Cooperative growth of Geobacter sulfurreducens and Clostridium pasteurianum with subsequent metabolic shift in glycerol fermentation. Scientific Reports, 2017, 7, 44334.	3.3	34
60	Dark-fermentative biohydrogen pathways and microbial networks in continuous stirred tank reactors: Novel insights on their control. Applied Energy, 2017, 198, 77-87.	10.1	77
61	Coupling dark fermentation and microbial electrolysis to enhance bio-hydrogen production from agro-industrial wastewaters and by-products in a bio-refinery framework. International Journal of Hydrogen Energy, 2017, 42, 1609-1621.	7.1	124
62	Biodegradation of polycyclic aromatic hydrocarbons: Using microbial bioelectrochemical systems to overcome an impasse. Environmental Pollution, 2017, 231, 509-523.	7.5	122
63	Revealing extracellular electron transfer mediated parasitism: energetic considerations. Scientific Reports, 2017, 7, 7766.	3.3	21
64	Accumulation of propionic acid during consecutive batch anaerobic digestion of commercial food waste. Bioresource Technology, 2017, 245, 724-733.	9.6	76
65	Optimal conditions for flexible methane production in a demand-based operation of biogas plants. Bioresource Technology, 2017, 245, 698-705.	9.6	14
66	Kinetic study of dry anaerobic co-digestion of food waste and cardboard for methane production. Waste Management, 2017, 69, 470-479.	7.4	40
67	Impact of wall shear stress on initial bacterial adhesion in rotating annular reactor. PLoS ONE, 2017, 12, e0172113.	2.5	47
68	Influence of process dynamics on the microbial diversity in a nitrifying biofilm reactor: Correlation analysis and simulation study. Biotechnology and Bioengineering, 2016, 113, 1962-1974.	3.3	7
69	Electrical conductivity as a state indicator for the start-up period of anaerobic fixed-bed reactors. Water Science and Technology, 2016, 73, 2294-2300.	2.5	8
70	High robustness of a simplified microbial consortium producing hydrogen in long term operation of a biofilm fermentative reactor. International Journal of Hydrogen Energy, 2016, 41, 2367-2376.	7.1	12
71	Bioelectrochemical treatment of table olive brine processing wastewater for biogas production and phenolic compounds removal. Water Research, 2016, 100, 316-325.	11.3	49
72	Electro-Fermentation: How To Drive Fermentation Using Electrochemical Systems. Trends in Biotechnology, 2016, 34, 856-865.	9.3	284

#	Article	IF	CITATIONS
73	Consistent 1,3-propanediol production from glycerol in mixed culture fermentation over a wide range of pH. Biotechnology for Biofuels, 2016, 9, 32.	6.2	59
74	Evaluation of a hybrid anaerobic biofilm reactor treating winery effluents and using grape stalks as biofilm carrier. Environmental Technology (United Kingdom), 2016, 37, 1676-1682.	2.2	4
75	Conservation of acquired morphology and community structure in aged biofilms after facing environmental stress. Water Research, 2016, 88, 164-172.	11.3	11
76	Bidirectional microbial electron transfer: Switching an acetate oxidizing biofilm to nitrate reducing conditions. Biosensors and Bioelectronics, 2016, 75, 352-358.	10.1	88
77	Electroactive Biofilms in Water and Air Pollution Treatment. , 2016, , 183-204.		1
78	Long-term continuous production of H 2 in a microbial electrolysis cell (MEC) treating saline wastewater. Water Research, 2015, 81, 149-156.	11.3	99
79	Microbial characterization of anode-respiring bacteria within biofilms developed from cultures previously enriched in dissimilatory metal-reducing bacteria. Bioresource Technology, 2015, 195, 283-287.	9.6	23
80	Invasibility of resident biofilms by allochthonous communities inÂbioreactors. Water Research, 2015, 81, 232-239.	11.3	5
81	Specific and efficient electrochemical selection of Geoalkalibacter subterraneus and Desulfuromonas acetoxidans in high current-producing biofilms. Bioelectrochemistry, 2015, 106, 221-225.	4.6	41
82	Dynamic observation of the biodegradation of lignocellulosic tissue under solid-state anaerobic conditions. Bioresource Technology, 2015, 191, 322-326.	9.6	20
83	Control of nitrogen behaviour by phosphate concentration during microalgal-bacterial cultivation using digestate. Bioresource Technology, 2015, 175, 224-230.	9.6	41
84	Nitrification and denitrification characteristics in a sequencing batch reactor treating tannery wastewater. Clean Technologies and Environmental Policy, 2015, 17, 735-745.	4.1	29
85	Biofilm development during the startâ€up period of anaerobic biofilm reactors: the biofilm <i>Archaea</i> community is highly dependent on the support material. Microbial Biotechnology, 2014, 7, 257-264.	4.2	47
86	New urban wastewater treatment with autotrophic membrane bioreactor at low chemical oxygen demand/N substrate ratio. Water Science and Technology, 2014, 69, 960-965.	2.5	7
87	Fermentative hydrogen production under moderate halophilic conditions. International Journal of Hydrogen Energy, 2014, 39, 7508-7517.	7.1	31
88	Sequential operation of a hybrid anaerobic reactor using a lignocellulosic biomass as biofilm support. Bioresource Technology, 2014, 172, 150-155.	9.6	17
89	Digestate color and light intensity affect nutrient removal and competition phenomena in a microalgal-bacterial ecosystem. Water Research, 2014, 64, 278-287.	11.3	117
90	Substrate milling pretreatment as a key parameter for Solid-State Anaerobic Digestion optimization. Bioresource Technology, 2014, 173, 185-192.	9.6	59

#	Article	IF	CITATIONS
91	Modelling ammonium-oxidizing population shifts in a biofilm reactor. Water Science and Technology, 2014, 69, 208-216.	2.5	5
92	Morphological structures of wheat straw strongly impacts its anaerobic digestion. Industrial Crops and Products, 2014, 52, 695-701.	5.2	47
93	An automated method for the quantification of moving predators such as rotifers in biofilms by image analysis. Journal of Microbiological Methods, 2014, 103, 40-43.	1.6	6
94	Total solid content drives hydrogen production through microbial selection during thermophilic fermentation. Bioresource Technology, 2014, 166, 610-615.	9.6	38
95	Dynamic effect of total solid content, low substrate/inoculum ratio and particle size on solid-state anaerobic digestion. Bioresource Technology, 2013, 144, 141-148.	9.6	129
96	Total solids content: a key parameter of metabolic pathways in dry anaerobic digestion. Biotechnology for Biofuels, 2013, 6, 164.	6.2	128
97	Distribution and hydrophobic properties of Extracellular Polymeric Substances in biofilms in relation towards cohesion. Journal of Biotechnology, 2013, 165, 85-92.	3.8	23
98	Effect of organic loading rate on anaerobic digestion of thermally pretreated Scenedesmus sp. biomass. Bioresource Technology, 2013, 129, 219-223.	9.6	76
99	High current density via direct electron transfer by the halophilic anode respiring bacterium Geoalkalibacter subterraneus. Physical Chemistry Chemical Physics, 2013, 15, 19699.	2.8	54
100	Biofilm model calibration and microbial diversity study using Monte Carlo simulations. Biotechnology and Bioengineering, 2013, 110, 1323-1332.	3.3	6
101	Disturbance Frequency Determines Morphology and Community Development in Multi-Species Biofilm at the Landscape Scale. PLoS ONE, 2013, 8, e80692.	2.5	21
102	Homogeneity and Synchronous Dynamics of Microbial Communities in Particulate Biofilms: from Major Populations to Minor Groups. Microbes and Environments, 2012, 27, 142-148.	1.6	5
103	Heterogeneity and spatial distribution of bacterial background contamination in pulp and process water of a paper mill. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 1751-1759.	3.0	7
104	Fate of steroid hormones and endocrine activities in swine manure disposal and treatment facilities. Water Research, 2012, 46, 895-906.	11.3	59
105	Impact of microalgae characteristics on their conversion to biofuel. Part II: Focus on biomethane production. Biofuels, Bioproducts and Biorefining, 2012, 6, 205-218.	3.7	179
106	Thermal pretreatment to improve methane production of Scenedesmus biomass. Biomass and Bioenergy, 2012, 40, 105-111.	5.7	182
107	Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production. Bioresource Technology, 2012, 110, 610-616.	9.6	184
108	Gas controlled hydrogen fermentation. Bioresource Technology, 2012, 110, 503-509.	9.6	50

#	Article	IF	CITATIONS
109	Impact of microalgae characteristics on their conversion to biofuel. Part I: Focus on cultivation and biofuel production. Biofuels, Bioproducts and Biorefining, 2012, 6, 105-113.	3.7	29
110	Combination of batch experiments with continuous reactor data for ADM1 calibration: application to anaerobic digestion of pig slurry. Water Science and Technology, 2011, 63, 2575-2582.	2.5	32
111	Control of start-up and operation of anaerobic biofilm reactors: An overview of 15 years of research. Water Research, 2011, 45, 1-10.	11.3	97
112	Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresource Technology, 2011, 102, 200-206.	9.6	335
113	Combined anaerobic and activated sludge anoxic/oxic treatment for piggery wastewater. Bioresource Technology, 2011, 102, 2185-2192.	9.6	51
114	Influence of support material properties on the potential selection of Archaea during initial adhesion of a methanogenic consortium. Bioresource Technology, 2011, 102, 4054-4060.	9.6	53
115	Enhanced methods for conditioning, storage, and extraction of liquid and solid samples of manure for determination of steroid hormones by solid-phase extraction and gas chromatography–mass spectrometry. Analytical and Bioanalytical Chemistry, 2010, 398, 973-984.	3.7	31
116	Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnology Advances, 2009, 27, 409-416.	11.7	1,002
117	Influence of abrasion on biofilm detachment: evidence for stratification of the biofilm. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 467-470.	3.0	25
118	A sequencing batch reactor system for high-level biological nitrogen and phosphorus removal from abattoir wastewater. Biodegradation, 2009, 20, 339-350.	3.0	39
119	Microbiology and performance of a methanogenic biofilm reactor during the start-up period. Journal of Applied Microbiology, 2009, 106, 863-876.	3.1	21
120	Challenges and innovations on biological treatment of livestock effluents. Bioresource Technology, 2009, 100, 5431-5436.	9.6	138
121	Improving pig manure conversion into biogas by thermal and thermo-chemical pretreatments. Bioresource Technology, 2009, 100, 3690-3694.	9.6	97
122	Elucidation of nitrate reduction pathways in anaerobic bioreactors using a stable isotope approach. Rapid Communications in Mass Spectrometry, 2008, 22, 1746-1750.	1.5	12
123	Microbial population dynamics in nitrifying reactors: Experimental evidence explained by a simple model including interspecies competition. Process Biochemistry, 2008, 43, 1398-1406.	3.7	20
124	The effect of incubation conditions on the laboratory measurement of the methane producing capacity of livestock wastes. Bioresource Technology, 2008, 99, 146-155.	9.6	113
125	Experimental determination by principal component analysis of a reaction pathway of biohydrogen production by anaerobic fermentation. Chemical Engineering and Processing: Process Intensification, 2008, 47, 1968-1975.	3.6	37
126	Anaerobic Digestion of Solid Wastes Needs Research to Face an Increasing Industrial Success. International Journal of Chemical Reactor Engineering, 2008, 6, .	1.1	14

#	Article	IF	CITATIONS
127	Competition between planktonic and fixed microorganisms during the start-up of methanogenic biofilm reactors. Water Research, 2008, 42, 792-800.	11.3	30
128	Stratification in the cohesion of biofilms grown under various environmental conditions. Water Research, 2008, 42, 2102-2110.	11.3	77
129	A pseudo-stoichiometric dynamic model of anaerobic hydrogen production from molasses. Water Research, 2008, 42, 2539-2550.	11.3	39
130	Role of shear stress on composition, diversity and dynamics of biofilm bacterial communities. Water Research, 2008, 42, 4915-4922.	11.3	187
131	Anaerobic digestion of gelatinous water at laboratory and pilot scale and nitrogen inhibition. Water Science and Technology, 2008, 57, 1735-1741.	2.5	1
132	Combined anaerobic digestion and biological nitrogen removal for piggery wastewater treatment: a modelling approach. Water Science and Technology, 2008, 58, 133-141.	2.5	21
133	Effect of Dissolved Oxygen Concentration on Nitrite Accumulation in Nitrifying Sequencing Batch Reactor. Water Environment Research, 2007, 79, 845-850.	2.7	9
134	Influence of hydrodynamic conditions on the start-up of methanogenic inverse turbulent bed reactors. Water Research, 2007, 41, 603-612.	11.3	19
135	Nitrate and nitrite injection during municipal solid waste anaerobic biodegradation. Waste Management, 2007, 27, 778-791.	7.4	50
136	Towards new indicators for the prediction of solid waste anaerobic digestion properties. Water Science and Technology, 2006, 53, 233-241.	2.5	160
137	Influence of closed loop control on microbial diversity in a nitrification process. Water Science and Technology, 2006, 53, 85-93.	2.5	11
138	Biofilm formation during the start-up period of an anaerobic biofilm reactor—Impact of nutrient complementation. Biochemical Engineering Journal, 2006, 30, 55-62.	3.6	64
139	Nitrification of a high-strength wastewater in an inverse turbulent bed reactor: Effect of temperature on nitrite accumulation. Process Biochemistry, 2006, 41, 106-113.	3.7	73
140	Use of the methane yield to indicate the metabolic behaviour of methanogenic biofilms. Process Biochemistry, 2005, 40, 2751-2755.	3.7	28
141	Effect of prefermentation on denitrifying phosphorus removal in slaughterhouse wastewater. Bioresource Technology, 2005, 96, 1317-1322.	9.6	58
142	Liquid mixing and gas–liquid mass transfer in a three-phase inverse turbulent bed reactor. Chemical Engineering Journal, 2005, 114, 1-7.	12.7	33
143	Modeling and control of nitrite accumulation in a nitrifying biofilm reactor. Biochemical Engineering Journal, 2005, 24, 173-183.	3.6	53
144	Leachate pre-treatment strategies before recirculation in landfill bioreactors. Water Science and Technology, 2005, 52, 289-297.	2.5	14

#	Article	IF	CITATIONS
145	Effect of solid hold-up on nitrite accumulation in a biofilm reactor - molecular characterization of nitrifying communities. Water Science and Technology, 2004, 49, 123-130.	2.5	48
146	Effect of the Addition of Bentonite on the Anaerobic Biodegradability of Solid Fatty Wastes. Environmental Technology (United Kingdom), 2004, 25, 459-469.	2.2	7
147	Effect of solid hold-up on nitrite accumulation in a biofilm reactormolecular characterization of nitrifying communities. Water Science and Technology, 2004, 49, 123-30.	2.5	2
148	Effect of saponification on the anaerobic digestion of solid fatty residues. Bioresource Technology, 2003, 90, 89-94.	9.6	64
149	Influence of Hydrodynamic Conditions on Biofilm Behavior in a Methanogenic Inverse Turbulent Bed Reactor. Biotechnology Progress, 2003, 19, 858-863.	2.6	13
150	Methane yield as a monitoring parameter for the start-up of anaerobic fixed film reactors. Water Research, 2002, 36, 1385-1391.	11.3	104
151	Biological denitrifying phosphorus removal in SBR: effect of added nitrate concentration and sludge retention time. Water Science and Technology, 2001, 43, 191-194.	2.5	27
152	SBR as a relevant technology to combine anaerobic digestion and denitrification in a single reactor. Water Science and Technology, 2001, 43, 209-214.	2.5	15
153	Simultaneous organic carbon and nitrogen removal in an SBR controlled at low dissolved oxygen concentration. Journal of Chemical Technology and Biotechnology, 2001, 76, 553-558.	3.2	25
154	Effect of Operating Parameters on Anoxic Biological Phosphorus Removal in Anaerobic Anoxic Sequencing Batch Reactor. Environmental Technology (United Kingdom), 2001, 22, 397-408.	2.2	12
155	Nitrification at Low Oxygen Concentration in Biofilm Reactor. Journal of Environmental Engineering, ASCE, 2001, 127, 266-271.	1.4	165
156	Effects of Oxygen Supply Methods on the Performance of a Sequencing Batch Reactor for High Ammonium Nitrification. Water Environment Research, 2000, 72, 195-200.	2.7	37
157	Effect of dissolved oxygen and carbon-nitrogen loads on denitrification by an aerobic consortium. Applied Microbiology and Biotechnology, 2000, 54, 535-542.	3.6	95
158	Lisier de porc: la solution biologique. Biofutur, 2000, 2000, 42-45.	0.0	5
159	Combined anaerobic–aerobic SBR for the treatment of piggery wastewater. Water Research, 2000, 34, 611-619.	11.3	164
160	Effect of culture conditions on the formation of struvite by Myxococcus xanthus. Chemosphere, 2000, 40, 1289-1296.	8.2	37
161	Interactions between methanogenic and nitrate reducing bacteria during the anaerobic digestion of an industrial sulfate rich wastewater. FEMS Microbiology Ecology, 1999, 29, 341-350.	2.7	45
162	Polyphosphate-Accumulating and Denitrifying Bacteria Isolated from Anaerobic-Anoxic and Anaerobic-Aerobic Sequencing Batch Reactors. Current Microbiology, 1999, 38, 9-17.	2.2	46

#	Article	IF	CITATIONS
163	Kinetic Behavior of Some Polyphosphate-Accumulating Bacteria Isolates in the Presence of Nitrate and Oxygen. Current Microbiology, 1999, 38, 300-308.	2.2	5
164	Acidogenic activity: Process of carbon source generation for biological nutrient removal. Water Science and Technology, 1999, 40, 25.	2.5	15
165	Aerobic granular sludge—a case report. Water Research, 1999, 33, 890-893.	11.3	223
166	Interactions between methanogenic and nitrate reducing bacteria during the anaerobic digestion of an industrial sulfate rich wastewater. FEMS Microbiology Ecology, 1999, 29, 341-350.	2.7	1
167	Effects of nitrogen oxides and denitrification by Pseudomonas stutzeri on acetotrophic methanogenesis by Methanosarcina mazei. FEMS Microbiology Ecology, 1998, 25, 271-276.	2.7	58
168	Combined biodegradation of carbon, nitrogen and phosphorus from wastewaters. Journal of Molecular Catalysis B: Enzymatic, 1998, 5, 429-433.	1.8	8
169	Biological nitrogen removal in a single aerobic reactor by association of a nitrifying ecosystem to an aerobic denitrifier, Microvirgula aerodenitrificans. Journal of Molecular Catalysis B: Enzymatic, 1998, 5, 435-439.	1.8	12
170	Nitrate and nitrite reduction of a sulphide-rich environment. Journal of Chemical Technology and Biotechnology, 1998, 72, 213-220.	3.2	33
171	Simultaneous removal of carbon, nitrogen and phosphorus from wastewater by coupling two-step anaerobic digestion with a sequencing batch reactor. , 1998, 73, 421-431.		8
172	Effect of Nitrate on Methanogenesis at Low Redox Potential. Environmental Technology (United) Tj ETQq0 0 0 i	gBT /Overl	lock 10 Tf 50
173	Microvirgula aerodenitrificans gen. nov., sp. nov., a new Gram-negative bacterium exhibiting co-respiration of oxygen and nitrogen oxides up to oxygen-saturated conditions. International Journal of Systematic Bacteriology, 1998, 48, 775-782.	2.8	75
174	Physiological, molecular and modeling studies of an aerobic denitrifier: microvirgula aerodenitrificans. Use of its properties in an integrated nitrogen removal plant. Water Science and Technology, 1998, 38, 167-175.	2.5	5
175	Effects of nitrogen oxides and denitrification by Pseudomonas stutzeri on acetotrophic methanogenesis by Methanosarcina mazei. FEMS Microbiology Ecology, 1998, 25, 271-276.	2.7	4
176	Influence du mode de ventilation des litières sur les émissions gazeuses d'azote NH ₃ , N ₂ O, N ₂ et sur le bilan d'azote en engraissement porcin. Agronomy for Sustainable Development, 1998, 18, 473-488.	0.8	1
177	Nitrate Reduction in Acidogenic Reactor: Influence of Wastewater COD/N-NO3 Ratio on Denitrification and Acidogenic Activity. Environmental Technology (United Kingdom), 1997, 18, 309-315.	2.2	25
178	Combined nitrification and denitrification in a single aerated reactor using the aerobic denitrifier Commonas sp. strain SGLY2. Water Research, 1997, 31, 1363-1370.	11.3	54
179	Start-up of anaerobic digestion of sulfate wastewater. Bioresource Technology, 1997, 61, 21-27.	9.6	25
180	Denitrification by Anaerobic Sludge in Piggery Wastewater. Environmental Technology (United) Tj ETQq0 0 0 rg	BT /Oyerlo	ock 10 Tf 50 6

#	Article	IF	CITATIONS
181	Use of an industrial effluent as a carbon source for denitrification of a high-strength wastewater. Applied Microbiology and Biotechnology, 1996, 46, 92-97.	3.6	60
182	Effect of oxygen on denitrification in continuous chemostat culture withComamonas sp SGLY2. Journal of Industrial Microbiology, 1996, 16, 124-128.	0.9	27
183	Study of the Denitrifying Enzymatic System of Comamonas sp. Strain SGLY2 Under Various Aeration Conditions with a Particular View on Nitrate and Nitrite Reductases. Current Microbiology, 1996, 32, 25-32.	2.2	26
184	A new method for the determination of dissolved sulfide in strongly colored anaerobically treated effluents. Bioprocess and Biosystems Engineering, 1996, 15, 317-322.	0.5	5
185	A new method for the determination of dissolved sulfide in strongly colored anaerobically treated effluents. Bioprocess and Biosystems Engineering, 1996, 15, 317.	0.5	0
186	Study of Physicochemical Factors Controlling Nitrite Build-Up During Heterotrophic Denitrification. Environmental Technology (United Kingdom), 1995, 16, 165-172.	2.2	4
187	Combined organic carbon and complete nitrogen removal using anaerobic and aerobic upflow filters. Water Science and Technology, 1994, 30, 297-306.	2.5	44
188	Denitrification under various aeration conditions in Comamonas sp., strain SGLY2. FEMS Microbiology Ecology, 1994, 14, 71-78.	2.7	72
189	Denitrification under various aeration conditions in Comamonas sp., strain SGLY2. FEMS Microbiology Ecology, 1994, 14, 71-78.	2.7	1
190	Isolation of Brevibacterium sp. R312 mutants potentially useful for the enzymatic production of adipic acid. Canadian Journal of Microbiology, 1993, 39, 524-528.	1.7	9
191	Bioconversion of acrylonitrile into acrylamide using a highly compact multiphasic reactor. The Chemical Engineering Journal, 1991, 46, B43-B51.	0.3	7
192	Bioconversion of <scp>L</scp> malic acid into <scp>L</scp> lactic acid using a high compacting multiphasic reactor (HCMR). Journal of Chemical Technology and Biotechnology, 1991, 51, 81-95.	3.2	15
193	Use of brevibacterium sp 19-derived amidase for the synthesis of hydroxamic fatty acids. Biotechnology Letters, 1990, 12, 689-692.	2.2	Ο
194	Optimization of Culture Conditions of Brevibacterium SP. A4 for the Production of Nitrile Hydratase. Biocatalysis, 1990, 3, 259-267.	0.9	13
195	Continuous immobilized cell reactor for amide hydrolysis. Journal of Industrial Microbiology, 1987, 2, 129-136.	0.9	12