
Noah L Weisleder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8478720/publications.pdf Version: 2024-02-01

NOAH I WEISLEDER

#	Article	IF	CITATIONS
1	Physiological acclimatization in Hawaiian corals following a 22-month shift in baseline seawater temperature and pH. Scientific Reports, 2022, 12, 3712.	3.3	9
2	Reduced Sarcolemmal Membrane Repair Exacerbates Striated Muscle Pathology in a Mouse Model of Duchenne Muscular Dystrophy. Cells, 2022, 11, 1417.	4.1	1
3	Enhancing Membrane Repair in Neuronal Cell Types as a Potential Therapeutic for Neurodegenerative Diseases. FASEB Journal, 2022, 36, .	0.5	0
4	Key Facilitator Proteins that Mediate Sarcolemma Membrane Repair have Potential as Therapeutics for Muscle Disease and Injury. FASEB Journal, 2022, 36, .	0.5	0
5	The Differential Contribution of TRIM72/MG53 Protein Domains in Plasma Membrane Repair. FASEB Journal, 2022, 36, .	0.5	Ο
6	Acute Knockdown of MG29 in Mouse Muscle Cells Reveals Signaling Mechanisms Associated with Polyunsaturated Fatty Acid (PUFA) – Implications for Sarcopenia. FASEB Journal, 2021, 35, .	0.5	0
7	Development of Novel Engineered Recombinant Proteins that Improve Cell Membrane Repair Response. FASEB Journal, 2021, 35, .	0.5	Ο
8	Environmental gradients drive physiological variation in Hawaiian corals. Coral Reefs, 2021, 40, 1505-1523.	2.2	8
9	Multiple poloxamers increase plasma membrane repair capacity in muscle and nonmuscle cells. American Journal of Physiology - Cell Physiology, 2020, 318, C253-C262.	4.6	16
10	Investigating genetic drivers of dermatomyositis pathogenesis using meta-analysis. Heliyon, 2020, 6, e04866.	3.2	10
11	Enhancing membrane repair increases regeneration in a sciatic injury model. PLoS ONE, 2020, 15, e0231194.	2.5	7
12	Autoantibodies targeting TRIM72 compromise membrane repair and contribute to inflammatory myopathy. Journal of Clinical Investigation, 2020, 130, 4440-4455.	8.2	10
13	Acute Knockdown of MG29 Alters Skeletal Muscle Cells Differentiation and Leads to Cellular Atrophy. FASEB Journal, 2020, 34, 1-1.	0.5	Ο
14	Modeling Human Cancer-induced Cachexia. Cell Reports, 2019, 28, 1612-1622.e4.	6.4	94
15	Enhancement of Cardiac Store Operated Calcium Entry (SOCE) within Novel Intercalated Disk Microdomains in Arrhythmic Disease. Scientific Reports, 2019, 9, 10179.	3.3	33
16	Multiple Poloxamers Improve Membrane Repair Capacity in a Model of Duchenne Muscular Dystrophy. FASEB Journal, 2019, 33, 868.12.	0.5	0
17	Key Facilitator Proteins that Mediate Sarcolemma Membrane Repair have Potential as Therapeutics for Muscle Disease and Injury. FASEB Journal, 2019, 33, 701.1.	0.5	0
18	A Murine Model of Myocardial Ischemia–Reperfusion Injury. Methods in Molecular Biology, 2018, 1717, 145-153.	0.9	15

NOAH L WEISLEDER

#	Article	IF	CITATIONS
19	Conserved structural and functional aspects of the tripartite motif gene family point towards therapeutic applications in multiple diseases. , 2018, 185, 12-25.		51
20	Renin-angiotensin-aldosterone system inhibitors improve membrane stability and change gene-expression profiles in dystrophic skeletal muscles. American Journal of Physiology - Cell Physiology, 2017, 312, C155-C168.	4.6	17
21	Treatment with Recombinant Human MG53 Protein Increases Membrane Integrity in a Mouse Model of Limb Girdle Muscular Dystrophy 2B. Molecular Therapy, 2017, 25, 2360-2371.	8.2	37
22	High-Throughput Microplate-Based Assay to Monitor Plasma Membrane Wounding and Repair. Frontiers in Cellular and Infection Microbiology, 2017, 7, 305.	3.9	9
23	Role of phosphatidylinositol-4,5-bisphosphate 3-kinase signaling in vesicular trafficking. Life Sciences, 2016, 167, 39-45.	4.3	17
24	Protein phosphatase 2A regulatory subunit B56α limits phosphatase activity in the heart. Science Signaling, 2015, 8, ra72.	3.6	45
25	Sarcolipin overexpression improves muscle energetics and reduces fatigue. Journal of Applied Physiology, 2015, 118, 1050-1058.	2.5	55
26	Plasma Membrane Repair: A Central Process for Maintaining Cellular Homeostasis. Physiology, 2015, 30, 438-448.	3.1	85
27	Cardioprotection of recombinant human MG53 protein in a porcine model of ischemia and reperfusion injury. Journal of Molecular and Cellular Cardiology, 2015, 80, 10-19.	1.9	91
28	Walkingâ€mediated upregulation of follistatinâ€like 3 expression is insufficient to increase muscle contractile force. FASEB Journal, 2015, 29, 992.2.	0.5	0
29	Modulating Membrane Repair Facilitates Therapeutic Cell Membrane Resealing in Striated Muscle. FASEB Journal, 2015, 29, 801.1.	0.5	0
30	The Effects of Simulated Intermittent Altitude on Mucosal Immunity. FASEB Journal, 2015, 29, 859.2.	0.5	0
31	Tripartite motif family proteins mediate vesicular trafficking during membrane repair in striated muscle. FASEB Journal, 2015, 29, 801.2.	0.5	0
32	Novel excitation-contraction coupling related genes reveal aspects of muscle weakness beyond atrophy—new hopes for treatment of musculoskeletal diseases. Frontiers in Physiology, 2014, 5, 37.	2.8	37
33	Treatment of acute lung injury by targeting MG53-mediated cell membrane repair. Nature Communications, 2014, 5, 4387.	12.8	100
34	A Murine Model of Myocardial Ischemia-reperfusion Injury through Ligation of the Left Anterior Descending Artery. Journal of Visualized Experiments, 2014, , .	0.3	63
35	Assessment of Calcium Sparks in Intact Skeletal Muscle Fibers. Journal of Visualized Experiments, 2014, , e50898.	0.3	9
36	Recombinant MG53 Protein Modulates Therapeutic Cell Membrane Repair in Treatment of Muscular Dystrophy. Science Translational Medicine, 2012, 4, 139ra85.	12.4	165

NOAH L WEISLEDER

#	Article	IF	CITATIONS
37	Enhancing Muscle Membrane Repair by Gene Delivery of MG53 Ameliorates Muscular Dystrophy and Heart Failure in δ-Sarcoglycan-deficient Hamsters. Molecular Therapy, 2012, 20, 727-735.	8.2	82
38	Nonmuscle myosin IIA facilitates vesicle trafficking for MG53â€mediated cell membrane repair. FASEB Journal, 2012, 26, 1875-1883.	0.5	64
39	Detection of Calcium Sparks in Intact and Permeabilized Skeletal Muscle Fibers. Methods in Molecular Biology, 2012, 798, 395-410.	0.9	9
40	Visualization of MG53-mediated Cell Membrane Repair Using in vivo and in vitro Systems. Journal of Visualized Experiments, 2011, , .	0.3	17
41	Dysferlin, Annexin A1, and Mitsugumin 53 Are Upregulated in Muscular Dystrophy and Localize to Longitudinal Tubules of the T-System With Stretch. Journal of Neuropathology and Experimental Neurology, 2011, 70, 302-313.	1.7	77
42	MG53 Constitutes a Primary Determinant of Cardiac Ischemic Preconditioning. Circulation, 2010, 121, 2565-2574.	1.6	169
43	Cardioprotection of Ischemia/Reperfusion Injury by Cholesterol-Dependent MG53-Mediated Membrane Repair. Circulation Research, 2010, 107, 76-83.	4.5	128
44	MG53 Regulates Membrane Budding and Exocytosis in Muscle Cells. Journal of Biological Chemistry, 2009, 284, 3314-3322.	3.4	99
45	Membrane Repair Defects in Muscular Dystrophy Are Linked to Altered Interaction between MG53, Caveolin-3, and Dysferlin. Journal of Biological Chemistry, 2009, 284, 15894-15902.	3.4	227
46	Mitsugumin 53 (MG53) facilitates vesicle trafficking in striated muscle to contribute to cell membrane repair. Communicative and Integrative Biology, 2009, 2, 225-226.	1.4	56
47	MG53 nucleates assembly of cell membrane repair machinery. Nature Cell Biology, 2009, 11, 56-64.	10.3	396
48	Immuno-proteomic approach to excitation–contraction coupling in skeletal and cardiac muscle: Molecular insights revealed by the mitsugumins. Cell Calcium, 2008, 43, 1-8.	2.4	60
49	Altered Ca2+ sparks in aging skeletal and cardiac muscle. Ageing Research Reviews, 2008, 7, 177-188.	10.9	33
50	Systemic ablation of RyR3 alters Ca2+ spark signaling in adult skeletal muscle. Cell Calcium, 2007, 42, 548-555.	2.4	21
51	Compromised storeâ€operated Ca entry (SOCE) in aged skeletal muscle. FASEB Journal, 2007, 21, A1206.	0.5	1
52	Ca2+ sparks as a plastic signal for skeletal muscle health, aging, and dystrophy. Acta Pharmacologica Sinica, 2006, 27, 791-798.	6.1	16
53	Muscle aging is associated with compromised Ca2+ spark signaling and segregated intracellular Ca2+ release. Journal of Cell Biology, 2006, 174, 639-645.	5.2	120