
Stéphane Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/847855/publications.pdf Version: 2024-02-01

STÃODHANE MADTIN

#	Article	lF	CITATIONS
1	Bidirectional regulation of synaptic SUMOylation by Group 1 metabotropic glutamate receptors. Cellular and Molecular Life Sciences, 2022, 79, .	5.4	1
2	Missense mutation of Fmr1 results in impaired AMPAR-mediated plasticity and socio-cognitive deficits in mice. Nature Communications, 2021, 12, 1557.	12.8	28
3	Proteomic Identification of an Endogenous Synaptic SUMOylome in the Developing Rat Brain. Frontiers in Molecular Neuroscience, 2021, 14, 780535.	2.9	8
4	Post-translational modifications of the Fragile X Mental Retardation Protein in neuronal function and dysfunction. Molecular Psychiatry, 2020, 25, 1688-1703.	7.9	24
5	Involvement of Phosphodiesterase 2A Activity in the Pathophysiology of Fragile X Syndrome. Cerebral Cortex, 2019, 29, 3241-3252.	2.9	35
6	The synaptic balance between sumoylation and desumoylation is maintained by the activation of metabotropic mGlu5 receptors. Cellular and Molecular Life Sciences, 2019, 76, 3019-3031.	5.4	18
7	Sumoylation regulates FMRP-mediated dendritic spine elimination and maturation. Nature Communications, 2018, 9, 757.	12.8	63
8	Ptchd1 deficiency induces excitatory synaptic and cognitive dysfunctions in mouse. Molecular Psychiatry, 2018, 23, 1356-1367.	7.9	74
9	New Insights Into the Role of Cav2 Protein Family in Calcium Flux Deregulation in Fmr1-KO Neurons. Frontiers in Molecular Neuroscience, 2018, 11, 342.	2.9	17
10	Commentary: Analysis of SUMO1-conjugation at synapses. Frontiers in Cellular Neuroscience, 2017, 11, 345.	3.7	19
11	Sumoylation in Synaptic Function and Dysfunction. Frontiers in Synaptic Neuroscience, 2016, 8, 9.	2.5	60
12	Interactions between <i>N</i> -Ethylmaleimide-sensitive factor and GluA2 contribute to effects of glucocorticoid hormones on AMPA receptor function in the rodent hippocampus. Hippocampus, 2016, 26, 848-856.	1.9	11
13	Tracking the activity-dependent diffusion of synaptic proteins using restricted photoconversion of Dendra2. Frontiers in Cellular Neuroscience, 2015, 9, 367.	3.7	6
14	mTOR is essential for corticosteroid effects on hippocampal AMPA receptor function and fear memory. Learning and Memory, 2015, 22, 577-583.	1.3	26
15	<i>In vitro</i> and <i>in vivo</i> regulation of synaptogenesis by the novel antidepressant spadin. British Journal of Pharmacology, 2015, 172, 2604-2617.	5.4	29
16	mGlu5 receptors regulate synaptic sumoylation via a transient PKC-dependent diffusional trapping of Ubc9 into spines. Nature Communications, 2014, 5, 5113.	12.8	32
17	Protein Sumoylation in Brain Development, Neuronal Morphology and Spinogenesis. NeuroMolecular Medicine, 2013, 15, 677-691.	3.4	27
18	Activityâ€dependent regulation of the sumoylation machinery in rat hippocampal neurons. Biology of the Cell, 2013, 105, 30-45.	2.0	51

STéPHANE MARTIN

#	Article	IF	CITATIONS
19	Regulation of Calcium Sensing Receptor Trafficking by RAMPs. Advances in Experimental Medicine and Biology, 2012, 744, 39-48.	1.6	11
20	Developmental Regulation and Spatiotemporal Redistribution of the Sumoylation Machinery in the Rat Central Nervous System. PLoS ONE, 2012, 7, e33757.	2.5	55
21	Corticosterone Alters AMPAR Mobility and Facilitates Bidirectional Synaptic Plasticity. PLoS ONE, 2009, 4, e4714.	2.5	113
22	Inhibition of Arp2/3-mediated actin polymerization by PICK1 regulates neuronal morphology and AMPA receptor endocytosis. Nature Cell Biology, 2008, 10, 259-271.	10.3	196
23	Regulation of calcium-sensing-receptor trafficking and cell-surface expression by GPCRs and RAMPs. Trends in Pharmacological Sciences, 2008, 29, 633-639.	8.7	31
24	Bidirectional Regulation of Kainate Receptor Surface Expression in Hippocampal Neurons. Journal of Biological Chemistry, 2008, 283, 36435-36440.	3.4	37
25	The calcium-sensing receptor changes cell shape via a β-arrestin-1–ARNO–ARF6–ELMO protein network. Journal of Cell Science, 2007, 120, 2489-2497.	2.0	41
26	Retaining Synaptic AMPARs. Neuron, 2007, 55, 825-827.	8.1	7
27	Emerging extranuclear roles of protein SUMOylation in neuronal function and dysfunction. Nature Reviews Neuroscience, 2007, 8, 948-959.	10.2	185
28	SUMOylation regulates kainate-receptor-mediated synaptic transmission. Nature, 2007, 447, 321-325.	27.8	255
29	Internalization-dependent regulation of HT29 cell proliferation by neurotensin. Peptides, 2006, 27, 2502-2507.	2.4	12
30	Neurotensin and the neurotensin receptor-3 in microglial cells. Journal of Neuroscience Research, 2005, 81, 322-326.	2.9	45
31	Receptor-activity-modifying proteins are required for forward trafficking of the calcium-sensing receptor to the plasma membrane. Journal of Cell Science, 2005, 118, 4709-4720.	2.0	150
32	Syntenin is involved in the developmental regulation of neuronal membrane architecture. Molecular and Cellular Neurosciences, 2005, 28, 737-746.	2.2	45
33	Activity-dependent endocytic sorting of kainate receptors to recycling or degradation pathways. EMBO Journal, 2004, 23, 4749-4759.	7.8	106
34	Internalization and trafficking of neurotensin via NTS3 receptors in HT29 cells. International Journal of Biochemistry and Cell Biology, 2004, 36, 2153-2168.	2.8	55
35	Involvement of the Neurotensin Receptor-3 in the Neurotensin-Induced Migration of Human Microglia. Journal of Neuroscience, 2003, 23, 1198-1205.	3.6	138
36	Neurotensin receptor–1 and –3 complex modulates the cellular signaling of neurotensin in the HT29 cell line. Gastroenterology, 2002, 123, 1135-1143.	1.3	123

#	Article	IF	CITATIONS
37	Recycling ability of the mouse and the human neurotensin type 2 receptors depends on a single tyrosine residue. Journal of Cell Science, 2002, 115, 165-73.	2.0	15
38	Pharmacological properties of the mouse neurotensin receptor 3. Maintenance of cell surface receptor during internalization of neurotensin. FEBS Letters, 2001, 495, 100-105.	2.8	44
39	Pivotal Role of an Aspartate Residue in Sodium Sensitivity and Coupling to G Proteins of Neurotensin Receptors. Molecular Pharmacology, 1999, 55, 210-215.	2.3	64