Komeil Nasouri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/84785/publications.pdf

Version: 2024-02-01

37 papers	982 citations	20 h-index	433756 31 g-index
puporo			S maon
37 all docs	37 docs citations	37 times ranked	1163 citing authors

#	Article	IF	CITATIONS
1	Modeling and optimization of electrospun PAN nanofiber diameter using response surface methodology and artificial neural networks. Journal of Applied Polymer Science, 2012, 126, 127-135.	1.3	104
2	Nanofibers (PU and PAN) and nanoparticles (Nanoclay and MWNTs) simultaneous effects on polyurethane foam sound absorption. Journal of Polymer Research, 2013, 20, 1.	1.2	72
3	Designing, modeling and manufacturing of lightweight carbon nanotubes/polymer composite nanofibers for electromagnetic interference shielding application. Composites Science and Technology, 2017, 145, 46-54.	3.8	72
4	RSM and ANN approaches for modeling and optimizing of electrospun polyurethane nanofibers morphology. Fibers and Polymers, 2012, 13, 1007-1014.	1.1	67
5	Fabrication of polyvinyl alcohol/multiâ€walled carbon nanotubes composite electrospun nanofibres and their application as microwave absorbing material. Micro and Nano Letters, 2013, 8, 455-459.	0.6	38
6	Investigation of polyacrylonitrile electrospun nanofibres morphology as a function of polymer concentration, viscosity and Berry number. Micro and Nano Letters, 2012, 7, 423.	0.6	36
7	Microwave absorption properties of polyaniline/poly(vinyl alcohol)/multi-walled carbon nanotube composites in thin film and nanofiber layer structures. Macromolecular Research, 2015, 23, 741-748.	1.0	36
8	Fabrication of magnetite nanoparticles/polyvinylpyrrolidone composite nanofibers and their application as electromagnetic interference shielding material. Journal of Thermoplastic Composite Materials, 2018, 31, 431-446.	2.6	35
9	Thermodynamic Studies on Polyvinylpyrrolidone Solution Systems Used for Fabrication of Electrospun Nanostructures: Effects of the Solvent. Advances in Polymer Technology, 2015, 34, .	0.8	33
10	Evaluation of effective electrospinning parameters controlling polyvinylpyrrolidone nanofibers surface morphology via response surface methodology. Fibers and Polymers, 2015, 16, 1941-1954.	1.1	32
11	Singleâ€wall carbon nanotubes dispersion behavior and its effects on the morphological and mechanical properties of the electrospun nanofibers. Polymer Composites, 2012, 33, 1951-1959.	2.3	31
12	Effects of polymer/solvent systems on electrospun polyvinylpyrrolidone nanofiber morphology and diameter. Polymer Science - Series A, 2015, 57, 747-755.	0.4	31
13	Manufacturing of PAN or PU Nanofiber Layers/PET Nonwoven Composite as Highly Effective Sound Absorbers. Advances in Polymer Technology, 2014, 33, .	0.8	30
14	Conductive polyacrylonitrile/polyaniline nanofibers prepared by electrospinning process. Polymer Science - Series A, 2015, 57, 343-349.	0.4	30
15	Theoretical and experimental studies on EMI shielding mechanisms of multi-walled carbon nanotubes reinforced high performance composite nanofibers. Journal of Polymer Research, 2016, 23, 1.	1.2	27
16	Manufacturing, modeling, and optimization of nickel-coated carbon fabric for highly efficient EMI shielding. Surface and Coatings Technology, 2021, 409, 126957.	2.2	24
17	Comparison between artificial neural network and response surface methodology in the prediction of the production rate of polyacrylonitrile electrospun nanofibers. Fibers and Polymers, 2013, 14, 1849-1856.	1.1	23
18	Synthesis and characterization of highly dispersed multi-walled carbon nanotubes/polyvinylpyrrolidone composite nanofibers for EMI shielding application. Polymer Composites, 2017, 38, 2026-2034.	2.3	23

#	Article	IF	CITATIONS
19	Fabrication of lightweight and flexible cellulose acetate composite nanofibers for highâ€performance ultra violet protective materials. Polymer Composites, 2019, 40, 3325-3332.	2.3	23
20	Synthesis of carbon nanotubes composite nanofibers for ultrahigh performance UV protection and microwave absorption applications. Diamond and Related Materials, 2020, 107, 107896.	1.8	23
21	Thermal conductivity of polyacrylonitrile nanofibre web in various nanofibre diameters and surface densities. Micro and Nano Letters, 2012, 7, 662.	0.6	21
22	Broadband and tunable high-performance microwave absorption properties by Ni-coated carbon fibers. Materials Chemistry and Physics, 2021, 274, 125127.	2.0	20
23	Morphological and Structural Developments in Nanoparticles Polyurethane Foam Nanocomposite's Synthesis and Their Effects on Mechanical Properties. Advances in Polymer Technology, 2013, 32, .	0.8	18
24	Fabrication of polyamide 6/carbon nanotubes composite electrospun nanofibers for microwave absorption application. Polymer Science - Series A, 2015, 57, 359-364.	0.4	18
25	Novel estimation of morphological behavior of electrospun nanofibers with artificial intelligence system (AIS). Polymer Testing, 2018, 69, 499-507.	2.3	17
26	Facile fabrication of carbon nanotubes/polystyrene composite nanofibers for high-performance electromagnetic interference shielding. Fibers and Polymers, 2016, 17, 1977-1984.	1.1	15
27	Incorporation of Nanofiber Layers in Nonwoven Materials for Improving Their Acoustic Properties. Journal of Engineered Fibers and Fabrics, 2013, 8, 155892501300800.	0.5	14
28	Fabrication of homogeneous multi-walled carbon nanotube/poly (vinyl alcohol) composite films using for microwave absorption application. Fibers and Polymers, 2014, 15, 583-588.	1.1	14
29	Effects of diameter and surface area of electrospun nanocomposite fibers on electromagnetic interference shielding. Polymer Science - Series A, 2017, 59, 718-725.	0.4	10
30	Facile synthesis of novel porous nickel/carbon fibers obtained from cigarette butts for high-frequency microwave absorption. Journal of Environmental Chemical Engineering, 2022, 10, 106969.	3. 3	8
31	Lightweight and Highly Flexible Metal Deposited Composite Fabrics for High-performance Electromagnetic Interference Shielding at Gigahertz Frequency. Fibers and Polymers, 2022, 23, 800-806.	1.1	7
32	Fabrication of Poly(methyl methacrylate) Nanofibers and Polyethylene Nonwoven with Sandwich Structures for Thermal Insulator Application. Advances in Polymer Technology, 2014, 33, .	0.8	6
33	Fabrication of high surface area PAN-based activated carbon fibers using response surface methodology. Fibers and Polymers, 2015, 16, 2141-2147.	1.1	6
34	UV Protection and Photocatalytic Activity of Novel Polyamide 6/ZnO Hybrid Nanofibers via Electrospinning/Electrospraying Method. Fibers and Polymers, 2020, 21, 1704-1712.	1.1	6
35	Synthesis of special acrylic nanofibers as an appropriate precursor for conductive carbon nanofibers. Journal of Materials Science: Materials in Electronics, 2019, 30, 7005-7017.	1.1	5
36	Structural engineering of nickel-coated carbon fibers with high electrical conductivity for flexible EMI shielding. Journal of Materials Science: Materials in Electronics, 2022, 33, 5648-5660.	1.1	5

3

#	Article	IF	CITATIONS
37	A new comprehensive evaluation of the corrosion mechanism of E-type glass fibers in sulfuric acid solutions. Construction and Building Materials, 2021, 268, 121213.	3.2	2