Murielle Chavarot-Kerlidou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8478272/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Combined Spectroscopic and Theoretical Study on a Ruthenium Complex Featuring a Ï€â€Extended dppz Ligand for Lightâ€Driven Accumulation of Multiple Reducing Equivalents. Chemistry - A European Journal, 2022, 28, e202103882.	3.3	5
2	Push–pull organic dyes and dye-catalyst assembly featuring a benzothiadiazole unit for photoelectrochemical hydrogen production. Sustainable Energy and Fuels, 2022, 6, 3565-3572.	4.9	3
3	Synthesis and Characterization of a Covalent Porphyrinâ€Cobalt Diimineâ€Dioxime Dyad for Photoelectrochemical H 2 Evolution. European Journal of Inorganic Chemistry, 2021, 2021, 1122-1129.	2.0	10
4	Spectroscopic Investigations Provide a Rationale for the Hydrogen-Evolving Activity of Dye-Sensitized Photocathodes Based on a Cobalt Tetraazamacrocyclic Catalyst. ACS Catalysis, 2021, 11, 3662-3678.	11.2	19
5	Hydrogen Production at a NiO Photocathode Based on a Ruthenium Dye–Cobalt Diimine Dioxime Catalyst Assembly: Insights from Advanced Spectroscopy and Post-operando Characterization. ACS Applied Materials & Interfaces, 2021, 13, 49802-49815.	8.0	16
6	Electrocatalytic reduction of protons to dihydrogen by the cobalt tetraazamacrocyclic complex [Co(N ₄ H)Cl ₂] ⁺ : mechanism and benchmarking of performances. Sustainable Energy and Fuels, 2021, 6, 143-149.	4.9	7
7	Dye-Sensitized Photocathodes: Boosting Photoelectrochemical Performances with Polyoxometalate Electron Transfer Mediators. ACS Applied Energy Materials, 2020, 3, 163-169.	5.1	14
8	Electrocatalytic Hydrogen Evolution with a Cobalt Complex Bearing Pendant Proton Relays: Acid Strength and Applied Potential Govern Mechanism and Stability. Journal of the American Chemical Society, 2020, 142, 274-282.	13.7	92
9	Investigating Light-Induced Processes in Covalent Dye-Catalyst Assemblies for Hydrogen Production. Catalysts, 2020, 10, 1340.	3.5	8
10	Tuning the Electron Storage Potential of a Chargeâ€Photoaccumulating Ru ^{II} Complex by a DFTâ€Guided Approach. Chemistry - A European Journal, 2019, 25, 13911-13920.	3.3	5
11	H ₂ -Evolving Dye-Sensitized Photocathode Based on a Ruthenium–Diacetylide/Cobaloxime Supramolecular Assembly. ACS Applied Energy Materials, 2019, 2, 4971-4980.	5.1	26
12	Investigating Light-Driven Hole Injection and Hydrogen Evolution Catalysis at Dye-Sensitized NiO Photocathodes: A Combined Experimental–Theoretical Study. Journal of Physical Chemistry C, 2019, 123, 17176-17184.	3.1	18
13	Earth-Abundant Molecular Z-Scheme Photoelectrochemical Cell for Overall Water-Splitting. Journal of the American Chemical Society, 2019, 141, 9593-9602.	13.7	84
14	Synthesis of Ruthenium Trisâ€Diimine Photosensitizers Substituted by Four Methylphosphonate Anchoring Groups for Dye‧ensitized Photoelectrochemical Cell Applications. European Journal of Inorganic Chemistry, 2019, 2019, 2154-2161.	2.0	9
15	Identification of Three-Way DNA Junction Ligands through Screening of Chemical Libraries and Validation by Complementary in Vitro Assays. Journal of Medicinal Chemistry, 2019, 62, 4456-4466.	6.4	25
16	Structure of Ni(OH)2 intermediates determines the efficiency of NiO-based photocathodes – a case study using novel mesoporous NiO nanostars. RSC Advances, 2019, 9, 39422-39433.	3.6	3
17	A ππ* State Enables Photoaccumulation of Charges on a π-Extended Dipyridophenazine Ligand in a Ru(II) Polypyridine Complex. Journal of Physical Chemistry C, 2018, 122, 83-95.	3.1	19
18	An artificial photosynthetic system for photoaccumulation of two electrons on a fused dipyridophenazine (dppz)–pyridoquinolinone ligand. Chemical Science, 2018, 9, 4152-4159.	7.4	48

#	Article	IF	CITATIONS
19	A noble metal-free photocatalytic system based on a novel cobalt tetrapyridyl catalyst for hydrogen production in fully aqueous medium. Sustainable Energy and Fuels, 2018, 2, 553-557.	4.9	37
20	Electron transfer in a covalent dye–cobalt catalyst assembly – a transient absorption spectroelectrochemistry perspective. Chemical Communications, 2018, 54, 10594-10597.	4.1	29
21	A protocol for quantifying hydrogen evolution by dye-sensitized molecular photocathodes and its implementation for evaluating a new covalent architecture based on an optimized dye-catalyst dyad. Dalton Transactions, 2018, 47, 10509-10516.	3.3	17
22	Photophysics of a Ruthenium Complex with a π-Extended Dipyridophenazine Ligand for DNA Quadruplex Labeling. Journal of Physical Chemistry A, 2018, 122, 6558-6569.	2.5	10
23	Insights into the mechanism and aging of a noble-metal free H ₂ -evolving dye-sensitized photocathode. Chemical Science, 2018, 9, 6721-6738.	7.4	31
24	Selective Luminescent Labeling of DNA and RNA Quadruplexes by Ï€â€Extended Ruthenium Lightâ€Up Probes. Chemistry - A European Journal, 2017, 23, 4967-4972.	3.3	24
25	Aqueous Photocurrent Measurements Correlated to Ultrafast Electron Transfer Dynamics at Ruthenium Tris Diimine Sensitized NiO Photocathodes. Journal of Physical Chemistry C, 2017, 121, 5891-5904.	3.1	33
26	CuAAC-based assembly and characterization of a ruthenium–copper dyad containing a diimine–dioxime ligand framework. Faraday Discussions, 2017, 198, 251-261.	3.2	12
27	Covalent Design for Dye-Sensitized H ₂ -Evolving Photocathodes Based on a Cobalt Diimine–Dioxime Catalyst. Journal of the American Chemical Society, 2016, 138, 12308-12311.	13.7	142
28	Synthesis of three series of ruthenium tris-diimine complexes containing acridine-based π-extended ligands using an efficient "chemistry on the complex―approach. Dalton Transactions, 2016, 45, 16298-16308.	3.3	10
29	Design and synthesis of novel organometallic dyes for NiO sensitization and photo-electrochemical applications. Dalton Transactions, 2016, 45, 12539-12547.	3.3	21
30	Microsecond Xâ€ray Absorption Spectroscopy Identification of Co ^I Intermediates in Cobaloximeâ€Catalyzed Hydrogen Evolution. Chemistry - A European Journal, 2015, 21, 15158-15162.	3.3	35
31	Dye-sensitized PS- <i>b</i> -P2VP-templated nickel oxide films for photoelectrochemical applications. Interface Focus, 2015, 5, 20140083.	3.0	32
32	Hydrogen Evolution Catalyzed by Cobalt Diimine–Dioxime Complexes. Accounts of Chemical Research, 2015, 48, 1286-1295.	15.6	228
33	Recent developments in hydrogen evolving molecular cobalt(II)–polypyridyl catalysts. Coordination Chemistry Reviews, 2015, 304-305, 3-19.	18.8	205
34	Molecular cathode and photocathode materials for hydrogen evolution in photoelectrochemical devices. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 25, 90-105.	11.6	84
35	Pump-Flow-Probe X-ray Absorption Spectroscopy as a Tool for Studying Intermediate States of Photocatalytic Systems. Journal of Physical Chemistry C, 2013, 117, 17367-17375.	3.1	31
36	A Computational Study of the Mechanism of Hydrogen Evolution by Cobalt(Diimineâ€Dioxime) Catalysts. Chemistry - A European Journal, 2013, 19, 15166-15174.	3.3	91

#	Article	IF	CITATIONS
37	Molecular engineering of a cobalt-based electrocatalytic nanomaterial for H2 evolution under fully aqueous conditions. Nature Chemistry, 2013, 5, 48-53.	13.6	349
38	Dye-sensitized nanostructured crystalline mesoporous tin-doped indium oxide films with tunable thickness for photoelectrochemical applications. Journal of Materials Chemistry A, 2013, 1, 8217.	10.3	33
39	Phosphine Coordination to a Cobalt Diimine–Dioxime Catalyst Increases Stability during Light-Driven H ₂ Production. Inorganic Chemistry, 2012, 51, 2115-2120.	4.0	98
40	Combined Experimental–Theoretical Characterization of the Hydrido-Cobaloxime [HCo(dmgH) ₂ (P <i>n</i> Bu ₃)]. Inorganic Chemistry, 2012, 51, 7087-7093.	4.0	55
41	Artificial Photosynthesis: From Molecular Catalysts for Lightâ€driven Water Splitting to Photoelectrochemical Cells. Photochemistry and Photobiology, 2011, 87, 946-964.	2.5	273
42	Splitting Water with Cobalt. Angewandte Chemie - International Edition, 2011, 50, 7238-7266.	13.8	1,231