
Rubén GonzÃ;lez-Núñez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8477777/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ground tire rubber/polyamide 6 thermoplastic elastomers produced by dry blending and compression molding. Progress in Rubber, Plastics and Recycling Technology, 2022, 38, 38-55.	0.8	7
2	Fiber-matrix interface improvement via glycidyl methacrylate compatibilization for rotomolded poly(lactic acid)/agave fiber biocomposites. Journal of Composite Materials, 2021, 55, 201-212.	1.2	10
3	Generation of Photopolymerized Microparticles Based on PEGDA Using Microfluidic Devices. Part 1. Initial Gelation Time and Mechanical Properties of the Material. Micromachines, 2021, 12, 293.	1.4	8
4	Effects of Nopal Mucilage (Opuntia ficus-indica) as Plasticizer in the Fabrication of Laminated and Tubular Films of Extruded Acetylated Starches. International Journal of Polymer Science, 2021, 2021, 1-9.	1.2	5
5	Rotational Molding of Poly(Lactic Acid)/Polyethylene Blends: Effects of the Mixing Strategy on the Physical and Mechanical Properties. Polymers, 2021, 13, 217.	2.0	13
6	Rotational molding of compatibilized PA6/LLDPE blends. Polymer Engineering and Science, 2021, 61, 1007-1017.	1.5	5
7	Mechanical and thermal properties of polyethylene/carbon nanofiber composites produced by rotational molding. Polymer Composites, 2020, 41, 1224-1233.	2.3	7
8	Morphological and Mechanical Properties of Bilayers Wood-Plastic Composites and Foams Obtained by Rotational Molding. Polymers, 2020, 12, 503.	2.0	26
9	Analysis of bubble formation during injection molding of polymeric foams by computational fluid dynamics simulations. Asia-Pacific Journal of Chemical Engineering, 2020, 15, e2474.	0.8	1
10	Increasing the efficiency of organic solar cells by using a bulk electron transport layer of PFN and green synthesized AgNs. Materials Letters, 2019, 237, 101-104.	1.3	3
11	Effect of low nanoclay content on the physico-mechanical properties of poly(lactic acid) nanocomposites. Polymers and Polymer Composites, 2019, 27, 43-54.	1.0	10
12	THE MULTIROLE OF MODIFIED NATURAL GUMS FOR MULTICOMPONENT POLYMERS: AS COUPLING AGENTS FOR POLYMERS REINFORCED WITH CELLULOSIC FIBERS OR COMPATIBILIZERS FOR BIODEGRADABLE POLYMER BLENDS. Quimica Nova, 2019, , .	0.3	2
13	Polylactic acid–agave fiber biocomposites produced by rotational molding: A comparative study with compression molding. Advances in Polymer Technology, 2018, 37, 2528-2540.	0.8	46
14	Long-term closed-loop recycling of high-density polyethylene/flax composites. Progress in Rubber, Plastics and Recycling Technology, 2018, 34, 171-199.	0.8	8
15	Thermal analysis of foamed polyethylene rotational molding followed by internal air temperature profiles. Polymer Engineering and Science, 2018, 58, E235.	1.5	12
16	Effect of fiber content and surface treatment on the mechanical properties of natural fiber composites produced by rotomolding. Composite Interfaces, 2017, 24, 35-53.	1.3	85
17	Effect of agave fiber surface treatment on the properties of polyethylene composites produced by dryâ€blending and compression molding. Polymer Composites, 2017, 38, 96-104.	2.3	26
18	Improvement of Pb(II) Adsorption Capacity by Controlled Alkali Treatment to Chitosan Supported onto Agave Fiberâ€HDPE Composites. Macromolecular Symposia, 2017, 374, 1600104.	0.4	5

Rubén GonzÃilez-Núñez

#	Article	IF	CITATIONS
19	High Density Polyethylene Degradation Followed by Closed-loop Recycling. Progress in Rubber, Plastics and Recycling Technology, 2017, 33, 17-38.	0.8	14
20	Preparation and characterization of multilayer foamed composite by rotational molding. Polymer Engineering and Science, 2016, 56, 278-286.	1.5	15
21	Effect of coupling agent content and water absorption on the mechanical properties of coirâ€agave fibers reinforced polyethylene hybrid composites. Polymer Composites, 2016, 37, 3015-3024.	2.3	44
22	Rotomolded polyethylene-agave fiber composites: Effect of fiber surface treatment on the mechanical properties. Polymer Engineering and Science, 2016, 56, 856-865.	1.5	36
23	Effect of thermal annealing on the mechanical and thermal properties of polylactic acid–cellulosic fiber biocomposites. Journal of Applied Polymer Science, 2016, 133, .	1.3	45
24	Asymmetric microcellular composites: Mechanical properties and modulus prediction. Journal of Cellular Plastics, 2016, 52, 365-398.	1.2	8
25	Water Absorption and Thermomechanical Characterization of Extruded Starch/Poly(lactic acid)/Agave Bagasse Fiber Bioplastic Composites. International Journal of Polymer Science, 2015, 2015, 1-7.	1.2	24
26	Self-hybridization and Coupling Agent Effect on the Properties of Natural Fiber/HDPE Composites. Journal of Polymers and the Environment, 2015, 23, 126-136.	2.4	19
27	Morphological and mechanical characterization of foamed polyethylene via biaxial rotational molding. Journal of Cellular Plastics, 2015, 51, 489-503.	1.2	28
28	Asymmetric microcellular composites: Morphological properties. Journal of Cellular Plastics, 2014, 50, 449-473.	1.2	22
29	Injection molded selfâ€hybrid composites based on polypropylene and natural fibers. Polymer Composites, 2014, 35, 1798-1806.	2.3	18
30	Effect of hybridization on the physical and mechanical properties of high density polyethylene–(pine/agave) composites. Materials & Design, 2014, 64, 35-43.	5.1	58
31	Polyester fiber production using virgin and recycled PET. Fibers and Polymers, 2014, 15, 547-552.	1.1	26
32	Morphology and properties of polystyrene/agave fiber composites and foams. Journal of Applied Polymer Science, 2013, 127, 599-606.	1.3	15
33	Functional properties of extruded and tubular films of sorghum starch-based glycerol and Yucca Schidigera extract. Industrial Crops and Products, 2013, 44, 405-412.	2.5	23
34	Functional properties of gelatin-based films containing Yucca schidigera extract produced via casting, extrusion and blown extrusion processes: A preliminary study. Journal of Food Engineering, 2012, 113, 33-40.	2.7	58
35	Chitosan Supported onto Agave Fiber—Postconsumer HDPE Composites for Cr(VI) Adsorption. Industrial & Engineering Chemistry Research, 2012, 51, 5939-5946.	1.8	28
36	Mechanical Properties of Recycled Polypropylene/SBR Rubber Crumbs Blends Reinforced by Birch Wood Flour. Polymers and Polymer Composites, 2012, 20, 439-444.	1.0	17

Rubén GonzÃilez-Núñez

#	Article	IF	CITATIONS
37	Rotational molding of polyethylene composites based on agave fibers. Polymer Engineering and Science, 2012, 52, 2489-2497.	1.5	61
38	Film processability and properties of polycaprolactone/thermoplastic starch blends. Journal of Applied Polymer Science, 2012, 123, 179-190.	1.3	6
39	Benzene, toluene, and o-xylene degradation by free and immobilized P. putida F1 of postconsumer agave-fiber/polymer foamed composites. International Biodeterioration and Biodegradation, 2011, 65, 539-546.	1.9	39
40	Postconsumer highâ€density polyethylene/agave fiber foamed composites coated with chitosan for the removal of heavy metals. Journal of Applied Polymer Science, 2010, 115, 2971-2980.	1.3	5
41	Potential of Hyperspectral Imaging for Quality Control of Polymer Blend Films. Industrial & Engineering Chemistry Research, 2009, 48, 3033-3042.	1.8	29
42	Rapid Starch Acetylation at Low Temperature Using Iodine as Catalyst. Macromolecular Symposia, 2009, 283–284, 174-180.	0.4	4
43	Using Chitosan as a Nucleation Agent in Thermoplastic Foams for Heavy Metal Adsorption. Macromolecular Symposia, 2009, 283–284, 152-158.	0.4	5
44	Fiberâ€particle morphological transition and its effect on impact strength of PS/HDPE blends. Polymer Engineering and Science, 2008, 48, 1600-1607.	1.5	5
45	Compatibilization of poly(vinyl chloride) and polystyrene blends with poly(styreneâ€ <i>co</i> â€ <i>n</i> â€methylolacrylamide). Journal of Applied Polymer Science, 2008, 110, 297-303.	1.3	2
46	Non-isothermal decomposition kinetics of azodicarbonamide in high density polyethylene using a capillary rheometer. Polymer Testing, 2008, 27, 730-735.	2.3	41
47	Effect of Mold Temperature on Morphology and Mechanical Properties of Injection Molded HDPE Structural Foams. Journal of Cellular Plastics, 2008, 44, 223-237.	1.2	41
48	Ldpe/Agave Fibre Composites: Effect of Coupling Agent and Weld Line on Mechanical and Morphological Properties. Polymers and Polymer Composites, 2008, 16, 115-123.	1.0	34
49	Effects of the blending sequence and interfacial agent on the morphology and mechanical properties of injection molded PC/PP Blends. Polymer Bulletin, 2007, 59, 251-260.	1.7	12
50	The Effect of Composition on Impact Properties of Foamed HDPE/PP Blends. Frontiers in Forests and Global Change, 2006, 25, 277-292.	0.6	16
51	The Effect of Post-extrusion Conditions in Ribbon Extrusion of Polymer Blends. International Polymer Processing, 2006, 21, 121-131.	0.3	5
52	Morphology of Extruded PP/HDPE Foam Blends. Journal of Cellular Plastics, 2006, 42, 469-485.	1.2	24
53	Effect of Freeze-Line Position and Stretching Force on the Morphology of LDPE-PA6 Blown Films. Journal of Plastic Film and Sheeting, 2006, 22, 287-314.	1.3	9
54	Morphology and Mechanical Properties of Foamed Polyethylene-Polypropylene Blends. Journal of Cellular Plastics, 2005, 41, 417-435.	1.2	42

#	Article	IF	CITATIONS
55	Compatibilization of polystyrene and polyamide 6 mixtures with poly(styrene-co-sodium acrylate). Journal of Applied Polymer Science, 2004, 91, 1736-1745.	1.3	20
56	Mechanical properties of polystyrene/polyamide 6 blends compatibilized with the ionomer poly(styrene-co-sodium acrylate). Journal of Applied Polymer Science, 2004, 92, 2545-2551.	1.3	22
57	Influence of post-extrusion parameters on the final morphology of polystyrene/high density polyethylene blends. Polymer Engineering and Science, 2003, 43, 1646-1656.	1.5	18
58	Barrier properties of polyamide-6/high density polyethylene blends. Polymer Bulletin, 2001, 46, 323-330.	1.7	25
59	Determination of a limiting dispersed phase concentration for coalescence in PA6/HDPE blends under extensional flow. Polymer, 2001, 42, 5485-5489.	1.8	41
60	Morphological stability of postconsumer PET/HDPE blends. Polymer Bulletin, 2000, 45, 295-302.	1.7	19
61	Ionomer synthesis by emulsion polymerization of styrene and sodium acrylate. Journal of Applied Polymer Science, 1997, 66, 879-889.	1.3	7
62	Deformation of drops in extensional viscoelastic flow. Journal of Applied Polymer Science, 1996, 62, 1627-1634.	1.3	19
63	The influence of coalescence on the morphology of the minor phase in melt-drawn polyamide-6/HDPE blends. Polymer, 1996, 37, 4689-4693.	1.8	67
64	Factors influencing the formation of elongated morphologies in immiscible polymer blends during melt processing. Polymer Engineering and Science, 1993, 33, 851-859.	1.5	88