
## Saverio Marchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8477671/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The machineries, regulation and cellular functions of mitochondrial calcium. Nature Reviews<br>Molecular Cell Biology, 2018, 19, 713-730.                                                    | 16.1 | 516       |
| 2  | Mitochondria-Ros Crosstalk in the Control of Cell Death and Aging. Journal of Signal Transduction, 2012, 2012, 1-17.                                                                         | 2.0  | 488       |
| 3  | Protein Kinase C Â and Prolyl Isomerase 1 Regulate Mitochondrial Effects of the Life-Span Determinant p66Shc. Science, 2007, 315, 659-663.                                                   | 6.0  | 448       |
| 4  | Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium, 2018, 69, 62-72.                                                                                   | 1.1  | 435       |
| 5  | Role of the c subunit of the F <sub>O</sub> ATP synthase in mitochondrial permeability transition. Cell Cycle, 2013, 12, 674-683.                                                            | 1.3  | 416       |
| 6  | Ca2+ transfer from the ER to mitochondria: When, how and why. Biochimica Et Biophysica Acta -<br>Bioenergetics, 2009, 1787, 1342-1351.                                                       | 0.5  | 396       |
| 7  | The endoplasmic reticulum–mitochondria connection: One touch, multiple functions. Biochimica Et<br>Biophysica Acta - Bioenergetics, 2014, 1837, 461-469.                                     | 0.5  | 392       |
| 8  | Mitochondrial Ca2+ and apoptosis. Cell Calcium, 2012, 52, 36-43.                                                                                                                             | 1.1  | 361       |
| 9  | ATP synthesis and storage. Purinergic Signalling, 2012, 8, 343-357.                                                                                                                          | 1.1  | 340       |
| 10 | Calcium signaling around Mitochondria Associated Membranes (MAMs). Cell Communication and Signaling, 2011, 9, 19.                                                                            | 2.7  | 304       |
| 11 | The mitochondrial calcium uniporter complex: molecular components, structure and physiopathological implications. Journal of Physiology, 2014, 592, 829-839.                                 | 1.3  | 232       |
| 12 | Protein Kinases and Phosphatases in the Control of Cell Fate. Enzyme Research, 2011, 2011, 1-26.                                                                                             | 1.8  | 229       |
| 13 | Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases. International Review of<br>Cell and Molecular Biology, 2018, 340, 209-344.                                       | 1.6  | 208       |
| 14 | Identification of PTEN at the ER and MAMs and its regulation of Ca2+ signaling and apoptosis in a protein phosphatase-dependent manner. Cell Death and Differentiation, 2013, 20, 1631-1643. | 5.0  | 204       |
| 15 | Downregulation of the Mitochondrial Calcium Uniporter by Cancer-Related miR-25. Current Biology, 2013, 23, 58-63.                                                                            | 1.8  | 198       |
| 16 | Mitochondrial calcium homeostasis as potential target for mitochondrial medicine. Mitochondrion, 2012, 12, 77-85.                                                                            | 1.6  | 158       |
| 17 | Subcellular calcium measurements in mammalian cells using jellyfish photoprotein aequorin-based<br>probes. Nature Protocols, 2013, 8, 2105-2118.                                             | 5.5  | 149       |
| 18 | Use of luciferase probes to measure ATP in living cells and animals. Nature Protocols, 2017, 12, 1542-1562.                                                                                  | 5.5  | 149       |

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Selective modulation of subtype III IP3R by Akt regulates ER Ca2+ release and apoptosis. Cell Death and Disease, 2012, 3, e304-e304.                                                                        | 2.7 | 145       |
| 20 | Mitochondrial Ca2+-dependent NLRP3 activation exacerbates the Pseudomonas aeruginosa-driven inflammatory response in cystic fibrosis. Nature Communications, 2015, 6, 6201.                                 | 5.8 | 130       |
| 21 | Ca2+ Fluxes and Cancer. Molecular Cell, 2020, 78, 1055-1069.                                                                                                                                                | 4.5 | 130       |
| 22 | Redox Control of Protein Kinase C: Cell- and Disease-Specific Aspects. Antioxidants and Redox<br>Signaling, 2010, 13, 1051-1085.                                                                            | 2.5 | 123       |
| 23 | Mcl-1 involvement in mitochondrial dynamics is associated with apoptotic cell death. Molecular<br>Biology of the Cell, 2016, 27, 20-34.                                                                     | 0.9 | 120       |
| 24 | Akt kinase reducing endoplasmic reticulum Ca2+ release protects cells from Ca2+-dependent apoptotic stimuli. Biochemical and Biophysical Research Communications, 2008, 375, 501-505.                       | 1.0 | 109       |
| 25 | Defective autophagy is a key feature of cerebral cavernous malformations. EMBO Molecular Medicine, 2015, 7, 1403-1417.                                                                                      | 3.3 | 109       |
| 26 | Endoplasmic Reticulum-Mitochondria Communication Through Ca2+ Signaling: The Importance of<br>Mitochondria-Associated Membranes (MAMs). Advances in Experimental Medicine and Biology, 2017,<br>997, 49-67. | 0.8 | 107       |
| 27 | KRIT1 Regulates the Homeostasis of Intracellular Reactive Oxygen Species. PLoS ONE, 2010, 5, e11786.                                                                                                        | 1.1 | 106       |
| 28 | Transglutaminase Type 2 Regulates ER-Mitochondria Contact Sites by Interacting with GRP75. Cell Reports, 2018, 25, 3573-3581.e4.                                                                            | 2.9 | 101       |
| 29 | Alterations of calcium homeostasis in cancer cells. Current Opinion in Pharmacology, 2016, 29, 1-6.                                                                                                         | 1.7 | 99        |
| 30 | Tumor necrosis factor-α impairs oligodendroglial differentiation through a mitochondria-dependent<br>process. Cell Death and Differentiation, 2014, 21, 1198-1208.                                          | 5.0 | 97        |
| 31 | Role of Mitochondria-Associated ER Membranes in Calcium Regulation in Cancer-Specific Settings.<br>Neoplasia, 2018, 20, 510-523.                                                                            | 2.3 | 96        |
| 32 | Aktâ€mediated phosphorylation of <scp>MICU</scp> 1 regulates mitochondrial Ca <sup>2+</sup> levels<br>and tumor growth. EMBO Journal, 2019, 38, .                                                           | 3.5 | 77        |
| 33 | Perturbed mitochondrial Ca <sup>2+</sup> signals as causes or consequences of mitophagy induction.<br>Autophagy, 2013, 9, 1677-1686.                                                                        | 4.3 | 73        |
| 34 | PRKCB/protein kinase C, beta and the mitochondrial axis as key regulators of autophagy. Autophagy, 2013, 9, 1367-1385.                                                                                      | 4.3 | 70        |
| 35 | Mitophagy in Cardiovascular Diseases. Journal of Clinical Medicine, 2020, 9, 892.                                                                                                                           | 1.0 | 70        |
| 36 | Noncanonical Cell Fate Regulation by Bcl-2 Proteins. Trends in Cell Biology, 2020, 30, 537-555.                                                                                                             | 3.6 | 70        |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Mitochondria-Associated Membranes (MAMs) as Hotspot Ca2+ Signaling Units. Advances in<br>Experimental Medicine and Biology, 2012, 740, 411-437.                                                         | 0.8 | 70        |
| 38 | Mitochondria in Multiple Sclerosis: Molecular Mechanisms of Pathogenesis. International Review of<br>Cell and Molecular Biology, 2017, 328, 49-103.                                                     | 1.6 | 65        |
| 39 | Intramitochondrial calcium regulation by the FHIT gene product sensitizes to apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12753-12758.        | 3.3 | 58        |
| 40 | H-Ras-driven tumoral maintenance is sustained through caveolin-1-dependent alterations in calcium signaling. Oncogene, 2014, 33, 2329-2340.                                                             | 2.6 | 54        |
| 41 | Mitochondria-Associated Endoplasmic Reticulum Membranes Microenvironment: Targeting<br>Autophagic and Apoptotic Pathways in Cancer Therapy. Frontiers in Oncology, 2015, 5, 173.                        | 1.3 | 53        |
| 42 | Autophagy and mitophagy elements are increased in body fluids of multiple sclerosis-affected individuals. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 439-441.                         | 0.9 | 53        |
| 43 | Oncogenic and oncosuppressive signal transduction at mitochondria-associated endoplasmic reticulum membranes. Molecular and Cellular Oncology, 2014, 1, e956469.                                        | 0.3 | 43        |
| 44 | Antipsychotic drugs counteract autophagy and mitophagy in multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .                             | 3.3 | 40        |
| 45 | TFEB-mediated increase in peripheral lysosomes regulates store-operated calcium entry. Scientific Reports, 2017, 7, 40797.                                                                              | 1.6 | 37        |
| 46 | Alterations in Ca2+ Signalling via ER-Mitochondria Contact Site Remodelling in Cancer. Advances in<br>Experimental Medicine and Biology, 2017, 997, 225-254.                                            | 0.8 | 35        |
| 47 | Dopamine D2 receptor-mediated neuroprotection in a G2019S Lrrk2 genetic model of Parkinson's<br>disease. Cell Death and Disease, 2018, 9, 204.                                                          | 2.7 | 35        |
| 48 | Interorganellar calcium signaling in the regulation of cell metabolism: A cancer perspective. Seminars<br>in Cell and Developmental Biology, 2020, 98, 167-180.                                         | 2.3 | 35        |
| 49 | Mitochondrial calcium uniporter complex modulation in cancerogenesis. Cell Cycle, 2019, 18, 1068-1083.                                                                                                  | 1.3 | 34        |
| 50 | The heme synthesis-export system regulates the tricarboxylic acid cycle flux and oxidative phosphorylation. Cell Reports, 2021, 35, 109252.                                                             | 2.9 | 29        |
| 51 | IP3 receptor blockade restores autophagy and mitochondrial function in skeletal muscle fibers of<br>dystrophic mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3685-3695. | 1.8 | 28        |
| 52 | Cellular processes underlying cerebral cavernous malformations: Autophagy as another point of view. Autophagy, 2016, 12, 424-425.                                                                       | 4.3 | 25        |
| 53 | Control of host mitochondria by bacterial pathogens. Trends in Microbiology, 2022, 30, 452-465.                                                                                                         | 3.5 | 25        |
|    |                                                                                                                                                                                                         |     |           |

Beyond multiple mechanisms and a unique drug: Defective autophagy as pivotal player in cerebral cavernous malformation pathogenesis and implications for targeted therapies. Rare Diseases (Austin,) Tj ETQq0 0 QugBT /Overlock 10 T 54

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | KRIT1 Deficiency Promotes Aortic Endothelial Dysfunction. International Journal of Molecular<br>Sciences, 2019, 20, 4930.                                                                                              | 1.8 | 24        |
| 56 | Citrate Mediates Crosstalk between Mitochondria and the Nucleus to Promote Human Mesenchymal<br>Stem Cell In Vitro Osteogenesis. Cells, 2020, 9, 1034.                                                                 | 1.8 | 21        |
| 57 | Endoplasmic Reticulum/Mitochondria Calcium Cross-Talk. Novartis Foundation Symposium, 0, , 122-139.                                                                                                                    | 1.2 | 21        |
| 58 | Mitochondrial calcium uniporter, MiRNA and cancer. Communicative and Integrative Biology, 2013, 6, e23818.                                                                                                             | 0.6 | 20        |
| 59 | High mitochondrial Ca <sup>2+</sup> content increases cancer cell proliferation upon inhibition of mitochondrial permeability transition pore (mPTP). Cell Cycle, 2019, 18, 914-916.                                   | 1.3 | 19        |
| 60 | Methods to Assess Mitochondrial Morphology in Mammalian Cells Mounting Autophagic or<br>Mitophagic Responses. Methods in Enzymology, 2017, 588, 171-186.                                                               | 0.4 | 18        |
| 61 | Impaired mitochondrial quality control in Rett Syndrome. Archives of Biochemistry and Biophysics, 2021, 700, 108790.                                                                                                   | 1.4 | 18        |
| 62 | The chaperoneâ€ <b>ŀ</b> ike sodium phenylbutyrate improves factor IX intracellular trafficking and activity<br>impaired by the frequent p.R294Q mutation. Journal of Thrombosis and Haemostasis, 2018, 16, 2035-2043. | 1.9 | 16        |
| 63 | Endoplasmic reticulum/mitochondria calcium cross-talk. Novartis Foundation Symposium, 2007, 287, 122-31; discussion 131-9.                                                                                             | 1.2 | 16        |
| 64 | Cancer-Related Increases and Decreases in Calcium Signaling at the Endoplasmic<br>Reticulum-Mitochondria Interface (MAMs). Reviews of Physiology, Biochemistry and Pharmacology,<br>2020, , 153-193.                   | 0.9 | 13        |
| 65 | Translational readthrough of <i>GLA</i> nonsense mutations suggests dominant-negative effects exerted by the interaction of wild-type and missense variants. RNA Biology, 2020, 17, 254-263.                           | 1.5 | 11        |
| 66 | Altered type I collagen networking in osteoporotic human femoral head revealed by<br>histomorphometric and Fourier transform infrared imaging correlated analyses. BioFactors, 2022, 48,<br>1089-1110.                 | 2.6 | 11        |
| 67 | Methods to Monitor Mitophagy and Mitochondrial Quality: Implications in Cancer,<br>Neurodegeneration, and Cardiovascular Diseases. Methods in Molecular Biology, 2021, 2310, 113-159.                                  | 0.4 | 9         |
| 68 | Heterotopic ossification in a patient with diffuse idiopathic skeletal hyperostosis: Input from histological findings. European Journal of Histochemistry, 2020, 64, .                                                 | 0.6 | 6         |
| 69 | Mitochondria in the line of fire. Cell Death and Differentiation, 2022, 29, 1301-1303.                                                                                                                                 | 5.0 | 5         |
| 70 | Editorial: Organelles Relationships and Interactions: A Cancer Perspective. Frontiers in Cell and Developmental Biology, 2021, 9, 678307.                                                                              | 1.8 | 4         |
| 71 | Mitochondria, calcium signaling and cell death by apoptosis and autophagy. Biochimica Et Biophysica<br>Acta - Bioenergetics, 2010, 1797, 4.                                                                            | 0.5 | 2         |
| 72 | The lessâ€known face of dupilumab: its role in mesenchymal stem cells by interleukinâ€13 modulation.<br>British Journal of Dermatology, 2021, 185, 217-219.                                                            | 1.4 | 2         |

| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Molecular Characterization of the Dominant-Negative Role of Cancer-Associated PTEN: Sometimes,<br>Null is Better. Frontiers in Oncology, 2014, 4, 276.                                       | 1.3 | 1         |
| 74 | Ca2+ in health and disease. International Review of Cell and Molecular Biology, 2021, 363, ix-xv.                                                                                            | 1.6 | 1         |
| 75 | MitopatHs: A new logically-framed tool for visualizing multiple mitochondrial pathways. IScience, 2021, 24, 102324.                                                                          | 1.9 | 1         |
| 76 | The RED light is on! New tools for monitoring Ca2+ dynamics in the endoplasmic reticulum and mitochondria. Biochemical Journal, 2014, 464, e5-e6.                                            | 1.7 | 0         |
| 77 | The Role of Oxidative Stress in Cerebral Cavernous Malformation (CCM) Pathogenesis: From Disease Mechanisms toward Therapeutic Approaches. Free Radical Biology and Medicine, 2015, 87, S56. | 1.3 | 0         |
| 78 | Krit1 loss-of-function increases TNF-α -induced apoptosis by inhibiting Notch1 in endothelial cells.<br>Journal of Molecular and Cellular Cardiology, 2018, 120, 48.                         | 0.9 | 0         |
| 79 | Preface: Ca2+ in health and disease. International Review of Cell and Molecular Biology, 2021, 362, xi-xvii.                                                                                 | 1.6 | 0         |
| 80 | Detection of p62/SQSTM1 Aggregates in Cellular Models of CCM Disease by Immunofluorescence.<br>Methods in Molecular Biology, 2020, 2152, 417-426.                                            | 0.4 | 0         |
| 81 | MitopatHs: A New Tool for the Visualisation and Comprehension of Multiple Mitochondrial Pathways<br>Through a Logical Frame. SSRN Electronic Journal, 0, , .                                 | 0.4 | ο         |