Matteo Ciccotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8477543/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fracture and adhesion of soft materials: a review. Reports on Progress in Physics, 2016, 79, 046601.	20.1	539
2	Design principles for superamphiphobic surfaces. Soft Matter, 2013, 9, 418-428.	2.7	196
3	Stress-corrosion mechanisms in silicate glasses. Journal Physics D: Applied Physics, 2009, 42, 214006.	2.8	159
4	Differences between static and dynamic elastic moduli of a typical seismogenic rock. Geophysical Journal International, 2004, 157, 474-477.	2.4	109
5	Rate-dependent elastic hysteresis during the peeling of pressure sensitive adhesives. Soft Matter, 2015, 11, 3480-3491.	2.7	73
6	Measuring nanoscale stress intensity factors with an atomic force microscope. Europhysics Letters, 2010, 89, 66003.	2.0	50
7	On the kinetics of peeling of an adhesive tape under a constant imposed load. International Journal of Adhesion and Adhesives, 1997, 17, 65-68.	2.9	46
8	Complex dynamics in the peeling of an adhesive tape. International Journal of Adhesion and Adhesives, 2004, 24, 143-151.	2.9	43
9	Stress-enhanced ion diffusion at the vicinity of a crack tip as evidenced by atomic force microscopy in silicate glasses. Journal of Non-Crystalline Solids, 2007, 353, 51-68.	3.1	43
10	The double torsion loading configuration for fracture propagation: an improved methodology for the load-relaxation at constant displacement. International Journal of Rock Mechanics and Minings Sciences, 2000, 37, 1103-1113.	5.8	42
11	Effects of Finite Probe Size on Self-Affine Roughness Measurements. Physical Review Letters, 2010, 104, 025502.	7.8	41
12	Griffith Cracks at the Nanoscale. International Journal of Applied Glass Science, 2013, 4, 76-86.	2.0	38
13	Measuring the fractal dimensions of ideal and actual objects: implications for application in geology and geophysics. Geophysical Journal International, 2000, 142, 108-116.	2.4	36
14	Capillary Force between Wetted Nanometric Contacts and Its Application to Atomic Force Microscopy. Langmuir, 2011, 27, 3468-3473.	3.5	36
15	Propagation of a brittle fracture in a viscoelastic fluid. Soft Matter, 2011, 7, 9474.	2.7	36
16	Nonlinear Viscoelastic Modeling of Adhesive Failure for Polyacrylate Pressure-Sensitive Adhesives. Macromolecules, 2018, 51, 8605-8610.	4.8	36
17	Crack opening profile in DCDC specimen. International Journal of Fracture, 2009, 156, 11-20.	2.2	34
18	Ultra-long range correlations of the dynamics of iammed soft matter. Soft Matter, 2010, 6, 5514.	2.7	34

ΜΑΤΤΕΟ CICCOTTI

#	Article	IF	CITATIONS
19	Real-Time Observation of a Non-Equilibrium Liquid Condensate Confined at Tensile Crack Tips in Oxide Glasses. Journal of the American Ceramic Society, 2006, 89, 746-749.	3.8	33
20	Dynamic condensation of water at crack tips in fused silica glass. Journal of Non-Crystalline Solids, 2008, 354, 564-568.	3.1	32
21	In-situ measurement of the large strain response of the fibrillar debonding region during the steady peeling of pressure sensitive adhesives. International Journal of Fracture, 2017, 204, 175-190.	2.2	32
22	Realistic Finiteâ€Element Model for the Doubleâ€Torsion Loading Configuration. Journal of the American Ceramic Society, 2000, 83, 2737-2744.	3.8	30
23	The Crack Tip: A Nanolab for Studying Confined Liquids. Physical Review Letters, 2008, 100, 165505.	7.8	29
24	Practical application of an improved methodology for the double torsion load relaxation method. International Journal of Rock Mechanics and Minings Sciences, 2001, 38, 569-576.	5.8	28
25	Stick-slip in the peeling of an adhesive tape: evolution of theoretical model. International Journal of Adhesion and Adhesives, 1998, 18, 35-40.	2.9	26
26	Linking peel and tack performances of pressure sensitive adhesives. Soft Matter, 2020, 16, 3267-3275.	2.7	26
27	Why is mechanical fatigue different from toughness in elastomers? The role of damage by polymer chain scission. Science Advances, 2021, 7, eabg9410.	10.3	26
28	Elastic and fracture parameters of Etna, Stromboli, and Vulcano lava rocks. Journal of Volcanology and Geothermal Research, 2000, 98, 209-217.	2.1	23
29	Cyclic fatigue failure of TPU using a crack propagation approach. Polymer Testing, 2021, 97, 107140.	4.8	23
30	Static and Dynamic Moduli of the Seismogenic Layer in Italy. Rock Mechanics and Rock Engineering, 2004, 37, 229.	5.4	21
31	Large strain viscoelastic dissipation during interfacial rupture in laminated glass. Soft Matter, 2017, 13, 1624-1633.	2.7	21
32	Mechanics of an adhesive tape in a zero degree peel test: effect of large deformation and material nonlinearity. Soft Matter, 2018, 14, 9681-9692.	2.7	21
33	Imaging the stick–slip peeling of an adhesive tape under a constant load. Journal of Statistical Mechanics: Theory and Experiment, 2007, 2007, P03005-P03005.	2.3	20
34	Quantitative Analysis of Crack Closure Driven by Laplace Pressure in Silica Glass. Journal of the American Ceramic Society, 2011, 94, 2613-2618.	3.8	20
35	Intermittent stick-slip dynamics during the peeling of an adhesive tape from a roller. Physical Review E, 2013, 87, 022601.	2.1	20
36	Supramolecular Structure for Large Strain Dissipation and Outstanding Impact Resistance in Polyvinylbutyral. Macromolecules, 2019, 52, 7821-7830.	4.8	18

ΜΑΤΤΕΟ CICCOTTI

#	Article	IF	CITATIONS
37	Pernicious effect of physical cutoffs in fractal analysis. Physical Review E, 2002, 65, 037201.	2.1	17
38	Multiscale Stick-Slip Dynamics of Adhesive Tape Peeling. Physical Review Letters, 2015, 115, 128301.	7.8	17
39	Crack propagation at the interface between soft adhesives and model surfaces studied with a sticky wedge test. Soft Matter, 2013, 9, 6515.	2.7	16
40	Mechanics of zero degree peel test on a tape —Âeffects of large deformation, material nonlinearity, and finite bond length. Extreme Mechanics Letters, 2019, 32, 100518.	4.1	16
41	Strain induced strengthening of soft thermoplastic polyurethanes under cyclic deformation. Journal of Polymer Science, 2021, 59, 685-696.	3.8	15
42	Self-Organization at the Crack Tip of Fatigue-Resistant Thermoplastic Polyurethane Elastomers. Macromolecules, 2021, 54, 8726-8737.	4.8	15
43	Earthquakes as three stage processes. Geophysical Journal International, 2004, 158, 98-108.	2.4	14
44	In situ AFM investigation of slow crack propagation mechanisms in a glassy polymer. Journal of the Mechanics and Physics of Solids, 2018, 112, 109-125.	4.8	14
45	Hidden order in crackling noise during peeling of an adhesive tape. Physical Review E, 2008, 77, 045202.	2.1	12
46	Picometer-scale surface roughness measurements inside hollow glass fibres. Optics Express, 2014, 22, 29554.	3.4	11
47	Anisotropic Superattenuation of Capillary Waves on Driven Glass Interfaces. Physical Review Letters, 2017, 119, 235501.	7.8	10
48	Adhesion rupture in laminated glass: influence of adhesion on the energy dissipation mechanisms. Glass Structures and Engineering, 2020, 5, 397-410.	1.7	10
49	Inertial and stick-slip regimes of unstable adhesive tape peeling. Soft Matter, 2016, 12, 4537-4548.	2.7	9
50	Multiscale investigation of stress-corrosion crack propagation mechanisms in oxide glasses. Corrosion Reviews, 2015, 33, 501-514.	2.0	7
51	Electrical noise properties in aging materials. , 2004, , .		6
52	Roughness of oxide glass subcritical fracture surfaces. Journal of the American Ceramic Society, 2018, 101, 1279-1288.	3.8	6
53	Bridging steady-state and stick-slip fracture propagation in glassy polymers. Soft Matter, 2022, 18, 793-806.	2.7	2
54	In Situ AFM Investigations and Fracture Mechanics Modeling of Slow Fracture Propagation in Oxide		1

and Polymer Glasses. , 2018, , 1-37.

1

#	Article	IF	CITATIONS
55	In Situ AFM Investigations and Fracture Mechanics Modeling of Slow Fracture Propagation in Oxide and Polymer Glasses. , 2020, , 199-236.		1
56	Roughness measurements inside hollow glass fibers. , 2016, , .		0
57	Thermal Noise Properties of Two Aging Materials. , 2006, , 23-52.		0