
Yanliang Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/847738/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of electrolyte anions on the cycle life of a polymer electrode in aqueous batteries. EScience, 2022, 2, 110-115.	41.6	58
2	High-Energy All-Solid-State Organic–Lithium Batteries Based on Ceramic Electrolytes. ACS Energy Letters, 2021, 6, 201-207.	17.4	37
3	On the quality of tape-cast thin films of sulfide electrolytes for solid-state batteries. Materials Today Physics, 2021, 18, 100397.	6.0	23
4	Microstructure engineering of solid-state composite cathode via solvent-assisted processing. Joule, 2021, 5, 1845-1859.	24.0	42
5	Roadmap of Solid-State Lithium-Organic Batteries toward 500 Wh kg ^{–1} . ACS Energy Letters, 2021, 6, 3287-3306.	17.4	31
6	Current status and future directions of all-solid-state batteries with lithium metal anodes, sulfide electrolytes, and layered transition metal oxide cathodes. Nano Energy, 2021, 87, 106081.	16.0	55
7	Separator Effect on Zinc Electrodeposition Behavior and Its Implication for Zinc Battery Lifetime. Nano Letters, 2021, 21, 10446-10452.	9.1	94
8	Current status and future directions of multivalent metal-ion batteries. Nature Energy, 2020, 5, 646-656.	39.5	798
9	High-power Mg batteries enabled by heterogeneous enolization redox chemistry and weakly coordinating electrolytes. Nature Energy, 2020, 5, 1043-1050.	39.5	205
10	Opportunities and Challenges for Organic Electrodes in Electrochemical Energy Storage. Chemical Reviews, 2020, 120, 6490-6557.	47.7	517
11	A Quinone Anode for Lithiumâ€lon Batteries in Mild Aqueous Electrolytes. ChemSusChem, 2020, 13, 2250-2255.	6.8	20
12	Charge Storage Mechanism of a Quinone Polymer Electrode for Zinc-ion Batteries. Journal of the Electrochemical Society, 2020, 167, 070558.	2.9	24
13	Chemically inert covalently networked triazole-based solid polymer electrolytes for stable all-solid-state lithium batteries. Journal of Materials Chemistry A, 2019, 7, 19691-19695.	10.3	17
14	Taming Active Material-Solid Electrolyte Interfaces with Organic Cathode for All-Solid-State Batteries. Joule, 2019, 3, 1349-1359.	24.0	70
15	Hyperbranched PEO-Based Hyperstar Solid Polymer Electrolytes with Simultaneous Improvement of Ion Transport and Mechanical Strength. ACS Applied Energy Materials, 2019, 2, 1608-1615.	5.1	74
16	In situ observations of interfacial evolutions in solid-state lithium battery with sulfide-based solid electrolyte. , 2019, , .		0
17	Directing Mg-Storage Chemistry in Organic Polymers toward High-Energy Mg Batteries. Joule, 2019, 3, 782-793.	24.0	124

18 Halfway through. Nature Energy, 2019, 4, 10-11.

39.5 11

YANLIANG LIANG

#	Article	IF	CITATIONS
19	Titelbild: Tailored Organic Electrode Material Compatible with Sulfide Electrolyte for Stable Allâ€&olidâ€&tate Sodium Batteries (Angew. Chem. 10/2018). Angewandte Chemie, 2018, 130, 2531-2531.	2.0	0
20	Tailored Organic Electrode Material Compatible with Sulfide Electrolyte for Stable Allâ€Solidâ€State Sodium Batteries. Angewandte Chemie, 2018, 130, 2660-2664.	2.0	22
21	Tailored Organic Electrode Material Compatible with Sulfide Electrolyte for Stable Allâ€Solidâ€State Sodium Batteries. Angewandte Chemie - International Edition, 2018, 57, 2630-2634.	13.8	138
22	Positioning Organic Electrode Materials in the Battery Landscape. Joule, 2018, 2, 1690-1706.	24.0	320
23	Architectural design and fabrication approaches for solid-state batteries. MRS Bulletin, 2018, 43, 775-781.	3.5	64
24	Electrolyte dictated materials design for beyond lithium ion batteries. , 2018, , .		0
25	A high-voltage rechargeable magnesium-sodium hybrid battery. Nano Energy, 2017, 34, 188-194.	16.0	84
26	Cross-conjugated oligomeric quinones for high performance organic batteries. Nano Energy, 2017, 37, 46-52.	16.0	97
27	Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nature Materials, 2017, 16, 841-848.	27.5	615
28	Moisture-driven phase transition for improved perovskite solar cells with reduced trap-state density. Nano Research, 2017, 10, 1413-1422.	10.4	20
29	An Aqueous Caâ€ i on Battery. Advanced Science, 2017, 4, 1700465.	11.2	254
30	Flower-Like Molybdenum Disulfide for Polarity-Triggered Accumulation/Release of Small Molecules. ACS Applied Materials & Interfaces, 2017, 9, 36431-36437.	8.0	45
31	Fast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteries. Nature Communications, 2017, 8, 339.	12.8	304
32	Advancing Electrolytes Towards Stable Organic Batteries. General Chemistry, 2017, 3, 207-212.	0.6	9
33	Poly(anthraquinonyl sulfide) cathode for potassium-ion batteries. Electrochemistry Communications, 2016, 71, 5-8.	4.7	235
34	Intercalation Pseudocapacitance of Exfoliated Molybdenum Disulfide for Ultrafast Energy Storage. ChemNanoMat, 2016, 2, 688-691.	2.8	38
35	Density functional theory study of Li, Na, and Mg intercalation and diffusion in MoS ₂ with controlled interlayer spacing. Materials Research Express, 2016, 3, 064001.	1.6	100
36	A magnesium–sodium hybrid battery with high operating voltage. Chemical Communications, 2016, 52, 8263-8266.	4.1	48

YANLIANG LIANG

#	Article	IF	CITATIONS
37	Chromate conversion coated aluminium as a light-weight and corrosion-resistant current collector for aqueous lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 395-399.	10.3	50
38	Low Dose Electron Microscopy of Interlayer Expanded Molybdenum Disulfide Nanocomposites. Microscopy and Microanalysis, 2015, 21, 1057-1058.	0.4	0
39	Enhancing sodium-ion battery performance with interlayer-expanded MoS2–PEO nanocomposites. Nano Energy, 2015, 15, 453-461.	16.0	269
40	Interlayer-Expanded Molybdenum Disulfide Nanocomposites for Electrochemical Magnesium Storage. Nano Letters, 2015, 15, 2194-2202.	9.1	357
41	High Areal Capacity Hybrid Magnesium–Lithium-Ion Battery with 99.9% Coulombic Efficiency for Large-Scale Energy Storage. ACS Applied Materials & Interfaces, 2015, 7, 7001-7007.	8.0	123
42	Heavily n-Dopable π-Conjugated Redox Polymers with Ultrafast Energy Storage Capability. Journal of the American Chemical Society, 2015, 137, 4956-4959.	13.7	242
43	Li ₃ VO ₄ anchored graphene nanosheets for long-life and high-rate lithium-ion batteries. Chemical Communications, 2015, 51, 229-231.	4.1	107
44	Carbon-coated rhombohedral Li ₃ V ₂ (PO ₄) ₃ as both cathode and anode materials for lithium-ion batteries: electrochemical performance and lithium storage mechanism. Journal of Materials Chemistry A, 2014, 2, 20231-20236.	10.3	44
45	Fused Heteroaromatic Organic Compounds for Highâ€Power Electrodes of Rechargeable Lithium Batteries. Advanced Energy Materials, 2013, 3, 600-605.	19.5	293
46	Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries. Chemical Science, 2013, 4, 1330.	7.4	355
47	Facile polymer-assisted synthesis of LiNi0.5Mn1.5O4 with a hierarchical micro–nano structure and high rate capability. RSC Advances, 2012, 2, 5669.	3.6	111
48	A thermally and electrochemically stable organic hole-transporting material with an adamantane central core and triarylamine moieties. Synthetic Metals, 2012, 162, 490-496.	3.9	47
49	Promoted hydrogen release from ammonia borane with mannitolvia a solid-state reaction route. Dalton Transactions, 2012, 41, 871-875.	3.3	16
50	Organic Electrode Materials for Rechargeable Lithium Batteries. Advanced Energy Materials, 2012, 2, 742-769.	19.5	1,125
51	Organic Electrodes: Organic Electrode Materials for Rechargeable Lithium Batteries (Adv. Energy) Tj ETQq1 1 0.7	784314 rg 19.5	BT <u> </u> qverlock
52	Size-controlled chalcopyrite CuInS2 nanocrystals: One-pot synthesis and optical characterization. Science China Chemistry, 2012, 55, 1236-1241.	8.2	17
53	Rechargeable Mg Batteries with Grapheneâ€ŀike MoS ₂ Cathode and Ultrasmall Mg Nanoparticle Anode. Advanced Materials, 2011, 23, 640-643.	21.0	474
54	Correlating Dye Adsorption Behavior with the Open-Circuit Voltage of Triphenylamine-Based Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 10992-10998.	3.1	95

YANLIANG LIANG

#	Article	IF	CITATIONS
55	All-Solid-State Dye-Sensitized Solar Cells with Alkyloxy-Imidazolium Iodide Ionic Polymer/SiO ₂ Nanocomposite Electrolyte and Triphenylamine-Based Organic Dyes. Journal of Physical Chemistry C, 2010, 114, 6814-6821.	3.1	52
56	Triphenylamine-Based Ionic Dyes with Simple Structures: Broad Photoresponse and Limitations on Open-Circuit Voltage in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 15842-15848.	3.1	29
57	Triphenylamine-Based Dyes Bearing Functionalized 3,4-Propylenedioxythiophene Linkers with Enhanced Performance for Dye-Sensitized Solar Cells. Organic Letters, 2010, 12, 1204-1207.	4.6	95
58	Triphenylamine-based organic dye containing the diphenylvinyl and rhodanine-3-acetic acid moieties for efficient dye-sensitized solar cells. Journal of Power Sources, 2009, 187, 620-626.	7.8	39
59	Ni1â^'xPtx (x=0–0.08) films as the photocathode of dye-sensitized solar cells with high efficiency. Nano Research, 2009, 2, 484-492.	10.4	42
60	Quasi-Solid-State Dye-Sensitized Solar Cells with Polymer Gel Electrolyte and Triphenylamine-Based Organic Dyes. ACS Applied Materials & Interfaces, 2009, 1, 944-950.	8.0	67
61	Boiling water-catalyzed neutral and selective N-Boc deprotection. Chemical Communications, 2009, , 5144.	4.1	100