Hajime Ogino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8477223/publications.pdf

Version: 2024-02-01

257357 265120 3,485 42 47 24 h-index citations g-index papers 49 49 49 3895 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Optimization of <scp>CRISPR/Cas9</scp> â€mediated gene disruption in <i>Xenopus laevis</i> using a phenotypic image analysis technique. Development Growth and Differentiation, 2022, 64, 219-225.	0.6	5
2	Heterogeneity of synonymous substitution rates in the Xenopus frog genome. PLoS ONE, 2020, 15, e0236515.	1.1	1
3	Complete mitochondrial genome of <i>Hynobius dunni</i> (Amphibia, Caudata, Hynobiidae) and its phylogenetic position. Mitochondrial DNA Part B: Resources, 2020, 5, 2241-2242.	0.2	2
4	Spontaneous neoplasia in the western clawed frog. MicroPublication Biology, 2020, 2020, .	0.1	O
5	Xenopus Resources: Transgenic, Inbred and Mutant Animals, Training Opportunities, and Web-Based Support. Frontiers in Physiology, 2019, 10, 387.	1.3	44
6	Comparative analysis demonstrates cell type-specific conservation of SOX9 targets between mouse and chicken. Scientific Reports, 2019, 9, 12560.	1.6	22
7	Functional properties of axolotl transient receptor potential ankyrin 1 revealed by the heterologous expression system. NeuroReport, 2019, 30, 323-330.	0.6	5
8	Arid3a regulates nephric tubule regeneration via evolutionarily conserved regeneration signal-response enhancers. ELife, $2019, 8, .$	2.8	22
9	Draft genome of Dugesia japonica provides insights into conserved regulatory elements of the brain restriction gene nou-darake in planarians. Zoological Letters, 2018, 4, 24.	0.7	38
10	Co-accumulation of cis-regulatory and coding mutations during the pseudogenization of the Xenopus laevis homoeologs six6.L and six6.S. Developmental Biology, 2017, 427, 84-92.	0.9	13
11	Asymmetrically reduced expression of hand1 homeologs involving a single nucleotide substitution in a cis -regulatory element. Developmental Biology, 2017, 425, 152-160.	0.9	3
12	Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis. Developmental Biology, 2017, 426, 301-324.	0.9	24
13	Disruption of Rest Leads to the Early Onset of Cataracts with the Aberrant Terminal Differentiation of Lens Fiber Cells. PLoS ONE, 2016, 11, e0163042.	1.1	7
14	Genome evolution in the allotetraploid frog Xenopus laevis. Nature, 2016, 538, 336-343.	13.7	849
15	Identification of distal enhancers for Six2 expression in pronephros. International Journal of Developmental Biology, 2015, 59, 241-246.	0.3	10
16	Epigenetic modification maintains intrinsic limb-cell identity in Xenopus limb bud regeneration. Developmental Biology, 2015, 406, 271-282.	0.9	32
17	Essential Roles of Epithelial Bone Morphogenetic Protein Signaling During Prostatic Development. Endocrinology, 2014, 155, 2534-2544.	1.4	13
18	Six1 is a key regulator of the developmental and evolutionary architecture of sensory neurons in craniates. BMC Biology, 2014, 12, 40.	1.7	20

#	Article	IF	CITATIONS
19	Transcriptional regulators in the Hippo signaling pathway control organ growth in Xenopus tadpole tail regeneration. Developmental Biology, 2014, 396, 31-41.	0.9	48
20	Differential Use of Paralogous Genes via Evolution of Cis-Regulatory Elements for Divergent Expression Specificities. , 2014, , 279-289.		0
21	Loss of cellâ€extracellular matrix interaction triggers retinal regeneration accompanied by <i>Rax</i> and <i>Pax6</i> Activation. Genesis, 2013, 51, 410-419.	0.8	21
22	Dynamic in vivo binding of transcription factors to cis-regulatory modules of <i>cer</i> and <i>gsc</i> in the stepwise formation of the Spemannâ€"Mangold organizer. Development (Cambridge), 2012, 139, 1651-1661.	1,2	41
23	Evolution of a tissue-specific silencer underlies divergence in the expression of pax2 and pax8 paralogues. Nature Communications, 2012, 3, 848.	5.8	32
24	Comparative Genomics-Based Identification and Analysis of Cis-Regulatory Elements. Methods in Molecular Biology, 2012, 917, 245-263.	0.4	9
25	Comparative expression analysis of the H3K27 demethylases, JMJD3 and UTX, with the H3K27 methylase, EZH2, in Xenopus. International Journal of Developmental Biology, 2012, 56, 295-300.	0.3	9
26	Transcription factors involved in lens development from the preplacodal ectoderm. Developmental Biology, 2012, 363, 333-347.	0.9	42
27	Different Requirement for Wnt/ \hat{l}^2 -Catenin Signaling in Limb Regeneration of Larval and Adult Xenopus. PLoS ONE, 2011, 6, e21721.	1.1	44
28	The Genome of the Western Clawed Frog <i>Xenopus tropicalis</i> . Science, 2010, 328, 633-636.	6.0	708
29	P33. Evolution of a fail-safe regulatory system for kidney development. Differentiation, 2010, 80, S27.	1.0	0
30	P34. Functional analysis of the histone H3K27 methyltransferase and demethylase in Xenopus embryonic development. Differentiation, 2010, 80, S28.	1.0	0
31	Evolutionary origin of the Otx2 enhancer for its expression in visceral endoderm. Developmental Biology, 2010, 342, 110-120.	0.9	7
32	Conserved expression of mouse Six1 in the pre-placodal region (PPR) and identification of an enhancer for the rostral PPR. Developmental Biology, 2010, 344, 158-171.	0.9	67
33	Resources and transgenesis techniques for functional genomics in <i>Xenopus</i> . Development Growth and Differentiation, 2009, 51, 387-401.	0.6	30
34	Convergence of a head-field selector Otx2 and Notch signaling: a mechanism for lens specification. Development (Cambridge), 2008, 135, 249-258.	1.2	79
35	Wnt/ \hat{l}^2 -catenin signaling has an essential role in the initiation of limb regeneration. Developmental Biology, 2007, 306, 170-178.	0.9	110
36	Highly efficient transgenesis in Xenopus tropicalis using I-Scel meganuclease. Mechanisms of Development, 2006, 123, 103-113.	1.7	101

#	Article	IF	CITATIONS
37	High-throughput transgenesis in Xenopus using I-Scel meganuclease. Nature Protocols, 2006, 1, 1703-1710.	5. 5	124
38	Temporal expression of L-Maf and RaxL in developing chicken retina are arranged into mosaic pattern. Gene Expression Patterns, 2004, 4, 489-494.	0.3	26
39	The Stability of the Lens-specific Maf Protein is Regulated by Fibroblast Growth Factor (FGF)/ERK Signaling in Lens Fiber Differentiation. Journal of Biological Chemistry, 2003, 278, 537-544.	1.6	44
40	Construction of a Set of Full-Length Enriched cDNA Libraries as Genomics Tools for Xenopus Tropicalis Research. Current Genomics, 2003, 4, 635-644.	0.7	1
41	L-Maf, a downstream target of Pax6, is essential for chick lens development. Mechanisms of Development, 2002, 116, 61-73.	1.7	59
42	Xenopus tropicalis transgenic lines and their use in the study of embryonic induction. Developmental Dynamics, 2002, 225, 522-535.	0.8	71
43	Isolation, Characterization, and Expression Analysis of Zebrafish Large Mafs. Journal of Biochemistry, 2001, 129, 139-146.	0.9	43
44	Sequential activation of transcription factors in lens induction. Development Growth and Differentiation, 2000, 42, 437-448.	0.6	109
45	Regulation of Lens Fiber Cell Differentiation by Transcription Factor c-Maf. Journal of Biological Chemistry, 1999, 274, 19254-19260.	1.6	226
46	Induction of Lens Differentiation by Activation of a bZIP Transcription Factor, L-Maf. Science, 1998, 280, 115-118.	6.0	269
47	Developmental regulation of the chicken Î ² B1-crystallin promoter in transgenic mice. Mechanisms of Development, 1996, 57, 79-89.	1.7	55