Yongbing Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8476405/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coral-like and binder-free carbon nanowires for potassium dual-ion batteries with superior rate capability and long-term cycling life. Green Energy and Environment, 2023, 8, 548-558.	4.7	10
2	An aqueous aluminum-ion electrochromic full battery with water-in-salt electrolyte for high-energy density. Energy Storage Materials, 2022, 44, 497-507.	9.5	48
3	Ultrasmall antimony nanodots embedded in carbon nanowires with three-dimensional porous structure for high-performance potassium dual-ion batteries. Chemical Engineering Journal, 2022, 431, 133444.	6.6	43
4	A fast and stable sodium-based dual-ion battery achieved by Cu3P@P-doped carbon matrix anode. Journal of Power Sources, 2022, 518, 230741.	4.0	33
5	Concentrated Electrolyte for Highâ€Performance Caâ€lon Battery Based on Organic Anode and Graphite Cathode. Angewandte Chemie - International Edition, 2022, 61, .	7.2	39
6	Carbon-coated MoS1.5Te0.5 nanocables for efficient sodium-ion storage in non-aqueous dual-ion batteries. Nature Communications, 2022, 13, 663.	5.8	66
7	Mainstream Optimization Strategies for Cathode Materials of Sodium″on Batteries. Small Structures, 2022, 3, .	6.9	84
8	Rational Design Strategy of Novel Energy Storage Systems: Toward Highâ€Performance Rechargeable Magnesium Batteries. Small, 2022, 18, e2200418.	5.2	56
9	Metalloidâ€Cluster Ligands Enabling Stable and Active FeN ₄ â€Te <i>_n</i> Motifs for the Oxygen Reduction Reaction. Advanced Materials, 2022, 34, e2202714.	11.1	40
10	A Vanadiumâ€Based Fluoroxide Cathode Material for Lithiumâ€lon Storage with High Energy Density. Advanced Sustainable Systems, 2022, 6, .	2.7	22
11	Novel metastable Bi:Co and Bi:Fe alloys nanodots@carbon as anodes for high rate K-ion batteries. Nano Research, 2022, 15, 7220-7226.	5.8	14
12	Perovskite-derived structure modulation in the iron sulfate family. Chemical Communications, 2022, 58, 7074-7077.	2.2	0
13	Homogeneous alloying reaction via self-assembly strategy for high-areal-density dual-ion batteries. Chemical Engineering Journal, 2022, 449, 137708.	6.6	8
14	Alloyâ€Type Anodes for Highâ€Performance Rechargeable Batteries. Angewandte Chemie, 2022, 134, .	1.6	2
15	Alloyâ€Type Anodes for Highâ€Performance Rechargeable Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	61
16	Molecular grafting towards high-fraction active nanodots implanted in N-doped carbon for sodium dual-ion batteries. National Science Review, 2021, 8, nwaa178.	4.6	132
17	Designing Ceramic/Polymer Composite as Highly Ionic Conductive Solid‣tate Electrolytes. Batteries and Supercaps, 2021, 4, 39-59.	2.4	49
18	A novel low-cost and environment-friendly cathode with large channels and high structure stability for potassium-ion storage. Science China Materials, 2021, 64, 1047-1057.	3.5	21

#	Article	IF	CITATIONS
19	High-performance Zn-graphite battery based on LiPF6 single-salt electrolyte with high working voltage and long cycling life. Journal of Energy Chemistry, 2021, 58, 602-609.	7.1	44
20	Recent Advances and Perspectives on Calciumâ€lon Storage: Key Materials and Devices. Advanced Materials, 2021, 33, e2005501.	11.1	101
21	A mechanically robust self-healing binder for silicon anode in lithium ion batteries. Nano Energy, 2021, 81, 105654.	8.2	141
22	Locally Ordered Graphitized Carbon Cathodes for Highâ€Capacity Dualâ€Ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 6326-6332.	7.2	101
23	Emerging trends in anion storage materials for the capacitive and hybrid energy storage and beyond. Chemical Society Reviews, 2021, 50, 6734-6789.	18.7	93
24	Mechanisms of sodiation in anatase TiO ₂ in terms of equilibrium thermodynamics and kinetics. Nanoscale Advances, 2021, 3, 4702-4713.	2.2	2
25	Tilting and twisting in a novel perovzalate, K3NaMn(C2O4)3. Chemical Communications, 2021, 57, 2567-2570.	2.2	7
26	Locally Ordered Graphitized Carbon Cathodes for Highâ€Capacity Dualâ€ l on Batteries. Angewandte Chemie, 2021, 133, 6396-6402.	1.6	26
27	The 2021 battery technology roadmap. Journal Physics D: Applied Physics, 2021, 54, 183001.	1.3	158
28	A Review of Emerging Dualâ€lon Batteries: Fundamentals and Recent Advances. Advanced Functional Materials, 2021, 31, 2010958.	7.8	132
29	Amorphous Carbon Nano-Interface-Modified Aluminum Anodes for High-Performance Dual-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 3710-3717.	3.2	22
30	Novel Lamellar Tetrapotassium Pyromellitic Organic for Robust High apacity Potassium Storage. Angewandte Chemie - International Edition, 2021, 60, 11835-11840.	7.2	95
31	Novel Lamellar Tetrapotassium Pyromellitic Organic for Robust High apacity Potassium Storage. Angewandte Chemie, 2021, 133, 11941-11946.	1.6	6
32	High Oxidation Potential â‰^6.0ÂV of Concentrated Electrolyte toward Highâ€Performance Dualâ€ion Battery. Advanced Energy Materials, 2021, 11, 2100151.	10.2	44
33	Kâ€ion Battery Cathode Design Utilizing Trigonal Prismatic Ligand Field. Advanced Materials, 2021, 33, e2101788.	11.1	55
34	Ultrathin Diamond Nanofilms—Development, Challenges, and Applications. Small, 2021, 17, e2007529.	5.2	61
35	Hierarchical Micro/Nanostructured Diamond Gradient Surface for Controlled Water Transport and Fog Collection. Advanced Materials Interfaces, 2021, 8, 2100196.	1.9	33
36	Recent Advances on Sodiumâ€ion Batteries and Sodium Dualâ€ion Batteries: Stateâ€ofâ€theâ€Art Na ^{+<!--<br-->Host Anode Materials. Small Science, 2021, 1, 2100014.}	sup>	65

#	Article	IF	CITATIONS
37	Recent Advances and Perspectives on the Polymer Electrolytes for Sodium/Potassiumâ€lon Batteries. Small, 2021, 17, e2006627.	5.2	99
38	Molecular Coupling and Selfâ€Assembly Strategy toward WSe ₂ /Carbon Micro–Nano Hierarchical Structure for Elevated Sodiumâ€ion Storage. Small Methods, 2021, 5, e2100374.	4.6	24
39	Energy Storage Mechanism, Challenge and Design Strategies of Metal Sulfides for Rechargeable Sodium/Potassiumâ€lon Batteries. Advanced Functional Materials, 2021, 31, 2103912.	7.8	108
40	A Caâ€lon Electrochromic Battery via a Waterâ€inâ€Salt Electrolyte. Advanced Functional Materials, 2021, 31, 2104639.	7.8	53
41	In Situ Chemical Lithiation Transforms Diamondâ€Like Carbon into an Ultrastrong Ion Conductor for Dendriteâ€Free Lithiumâ€Metal Anodes. Advanced Materials, 2021, 33, e2100793.	11.1	82
42	Dualâ€Ion Batteries: High Oxidation Potential â‰^6.0ÂV of Concentrated Electrolyte toward Highâ€Performance Dualâ€Ion Battery (Adv. Energy Mater. 25/2021). Advanced Energy Materials, 2021, 11, 2170096.	10.2	0
43	Extended iodine chemistry: Toward high-energy-density aqueous zinc-ion batteries. Matter, 2021, 4, 2637-2639.	5.0	14
44	High-Performance Potassium-Ion-Based Full Battery Enabled by an Ionic-Drill Strategy. CCS Chemistry, 2021, 3, 85-94.	4.6	22
45	Atomic layer deposition triggered Fe-In-S cluster and gradient energy band in ZnInS photoanode for improved oxygen evolution reaction. Nature Communications, 2021, 12, 5247.	5.8	36
46	Development and challenges of electrode materials for rechargeable Mg batteries. Energy Storage Materials, 2021, 42, 687-704.	9.5	29
47	Advances and Prospects of Dualâ€ion Batteries. Advanced Energy Materials, 2021, 11, 2102498.	10.2	73
48	The Free-Standing Alloy Strategy to Improve the Electrochemical Performance of Potassium-Based Dual-Ion Batteries. ACS Energy Letters, 2021, 6, 4336-4344.	8.8	33
49	Interface engineering toward <scp>highâ€efficiency</scp> alloy anode for nextâ€generation energy storage device. EcoMat, 2021, 3, .	6.8	29
50	Strategien für kostengünstige und leistungsstarke Dualâ€lonenâ€Batterien. Angewandte Chemie, 2020, 132 3830-3861.	' 1.6	40
51	Strategies towards Low ost Dualâ€ion Batteries with High Performance. Angewandte Chemie - International Edition, 2020, 59, 3802-3832.	7.2	242
52	A Lowâ€Cost and Environmentally Friendly Mixed Polyanionic Cathode for Sodiumâ€lon Storage. Angewandte Chemie - International Edition, 2020, 59, 740-745.	7.2	75
53	A Flexible Dualâ€Ion Battery Based on Sodiumâ€Ion Quasiâ€Solidâ€State Electrolyte with Long Cycling Life. Advanced Functional Materials, 2020, 30, 1906770.	7.8	104
54	A Lowâ€Cost and Environmentally Friendly Mixed Polyanionic Cathode for Sodiumâ€lon Storage. Angewandte Chemie, 2020, 132, 750-755.	1.6	25

#	Article	IF	CITATIONS
55	High-performance rechargeable zinc-based dual-ion batteries. Sustainable Energy and Fuels, 2020, 4, 101-107.	2.5	49
56	A Flexible Potassium-Ion Hybrid Capacitor with Superior Rate Performance and Long Cycling Life. ACS Applied Materials & amp; Interfaces, 2020, 12, 2424-2431.	4.0	59
57	Highly Concentrated and Nonflammable Electrolyte for High Energy Density K-Based Dual-Ion Battery. ACS Applied Energy Materials, 2020, 3, 10202-10208.	2.5	23
58	Pseudocapacitive Ti-Doped Niobium Pentoxide Nanoflake Structure Design for a Fast Kinetics Anode toward a High-Performance Mg-Ion-Based Dual-Ion Battery. ACS Applied Materials & Interfaces, 2020, 12, 47539-47547.	4.0	35
59	Nanostructured and Boron-Doped Diamond as an Electrocatalyst for Nitrogen Fixation. ACS Energy Letters, 2020, 5, 2590-2596.	8.8	55
60	Synthesis, Structure, and Electrochemical Properties of Some Cobalt Oxalates. Inorganic Chemistry, 2020, 59, 16936-16943.	1.9	10
61	In Situ Twoâ€Step Activation Strategy Boosting Hierarchical Porous Carbon Cathode for an Aqueous Znâ€Based Hybrid Energy Storage Device with High Capacity and Ultra‣ong Cycling Life. Small, 2020, 16, e2003174.	5.2	105
62	Corrosion-Resistant Functional Diamond Coatings for Reliable Interfacing of Liquid Metals with Solid Metals. ACS Applied Materials & Interfaces, 2020, 12, 40891-40900.	4.0	28
63	6.0 V Highâ€Voltage and Concentrated Electrolyte toward High Energy Density Kâ€Based Dualâ€Graphite Battery. Advanced Energy Materials, 2020, 10, 2002567.	10.2	89
64	Fast Rate and Long Life Potassiumâ€ion Based Dualâ€ion Battery through 3D Porous Organic Negative Electrode. Advanced Functional Materials, 2020, 30, 2001440.	7.8	155
65	Artificial Solid Electrolyte Interphase Acting as "Armor―to Protect the Anode Materials for High-performance Lithium-ion Battery. Chemical Research in Chinese Universities, 2020, 36, 402-409.	1.3	32
66	UV-to-IR highly transparent ultrathin diamond nanofilms with intriguing performances: Anti-fogging, self-cleaning and self-lubricating. Applied Surface Science, 2020, 527, 146733.	3.1	32
67	In-situ implanted carbon nanofilms into lithium titanate with 3D porous structure as fast kinetics anode for high-performance dual-ion battery. Chemical Engineering Journal, 2020, 401, 125834.	6.6	23
68	Facile Ion-Exchange Strategy for Na ⁺ /K ⁺ Hybrid-Ion Batteries with Superior Rate Capability and Cycling Performance. ACS Applied Energy Materials, 2020, 3, 7030-7038.	2.5	13
69	Highly Concentrated Electrolyte towards Enhanced Energy Density and Cycling Life of Dualâ€ l on Battery. Angewandte Chemie - International Edition, 2020, 59, 17924-17930.	7.2	99
70	Interface design to tune stress distribution for high performance diamond/silicon carbide coated cemented carbide tools. Surface and Coatings Technology, 2020, 397, 125975.	2.2	14
71	A fluoroxalate cathode material for potassium-ion batteries with ultra-long cyclability. Nature Communications, 2020, 11, 1225.	5.8	173
72	Simultaneously pre-alloying and artificial solid electrolyte interface towards highly stable aluminum anode for high-performance Li hybrid capacitor. Energy Storage Materials, 2020, 28, 357-363.	9.5	50

#	Article	IF	CITATIONS
73	Highly Concentrated Electrolyte towards Enhanced Energy Density and Cycling Life of Dualâ€lon Battery. Angewandte Chemie, 2020, 132, 18080-18086.	1.6	6
74	Recent progress and perspective on electrolytes for sodium/potassium-based devices. Energy Storage Materials, 2020, 31, 328-343.	9.5	68
75	Flexible Interface Design for Stress Regulation of a Silicon Anode toward Highly Stable Dualâ€lon Batteries. Advanced Materials, 2020, 32, e1908470.	11.1	126
76	2020 Roadmap on Carbon Materials for Energy Storage and Conversion. Chemistry - an Asian Journal, 2020, 15, 995-1013.	1.7	154
77	Gemischte polyanionische Verbindungen als positive Elektroden für die kostengünstige elektrochemische Energiespeicherung. Angewandte Chemie, 2020, 132, 9342-9349.	1.6	10
78	Mixed Polyanionic Compounds as Positive Electrodes for Lowâ€Cost Electrochemical Energy Storage. Angewandte Chemie - International Edition, 2020, 59, 9255-9262.	7.2	77
79	Robust Biomimetic Hierarchical Diamond Architecture with a Self-Cleaning, Antibacterial, and Antibiofouling Surface. ACS Applied Materials & amp; Interfaces, 2020, 12, 24432-24441.	4.0	95
80	Highly stable magnesium-ion-based dual-ion batteries based on insoluble small-molecule organic anode material. Energy Storage Materials, 2020, 30, 34-41.	9.5	113
81	Colorful Diamondâ€Like Carbon Films from Different Micro/Nanostructures. Advanced Optical Materials, 2020, 8, 1902064.	3.6	14
82	An iron-based polyanionic cathode for potassium storage with high capacity and excellent cycling stability. Journal of Materials Chemistry A, 2020, 8, 9128-9136.	5.2	33
83	Calcium Batteries: Roomâ€Temperature Rechargeable Caâ€Ion Based Hybrid Batteries with High Rate Capability and Longâ€Term Cycling Life (Adv. Energy Mater. 29/2019). Advanced Energy Materials, 2019, 9, 1970113.	10.2	0
84	An oxalate cathode for lithium ion batteries with combined cationic and polyanionic redox. Nature Communications, 2019, 10, 3483.	5.8	65
85	Roomâ€Temperature Rechargeable Caâ€Ion Based Hybrid Batteries with High Rate Capability and Longâ€Term Cycling Life. Advanced Energy Materials, 2019, 9, 1901099.	10.2	41
86	Hollow Carbon Nanobelts Codoped with Nitrogen and Sulfur via a Selfâ€Templated Method for a Highâ€Performance Sodiumâ€Ion Capacitor. Small, 2019, 15, e1902659.	5.2	50
87	Uniform Distribution of Alloying/Dealloying Stress for High Structural Stability of an Al Anode in Highâ€Arealâ€Đensity Lithiumâ€Ion Batteries. Advanced Materials, 2019, 31, e1900826.	11.1	75
88	Hybridizing anions towards fast diffusion kinetics for tri-ion batteries with significantly improved rate capability and cycling life. Journal of Materials Chemistry A, 2019, 7, 10930-10935.	5.2	12
89	Multi-ion strategies towards emerging rechargeable batteries with high performance. Energy Storage Materials, 2019, 23, 566-586.	9.5	119
90	Hierarchically nanostructured ZnCo2O4 particles in 3D graphene networks for high-rate and long-life lithium ion batteries. Materials Today Energy, 2019, 12, 46-52.	2.5	18

#	Article	IF	CITATIONS
91	A Calciumâ€lon Hybrid Energy Storage Device with High Capacity and Long Cycling Life under Room Temperature. Advanced Energy Materials, 2019, 9, 1803865.	10.2	104
92	Ultrahigh Nitrogen Doping of Carbon Nanosheets for High Capacity and Long Cycling Potassium Ion Storage. Advanced Energy Materials, 2019, 9, 1902672.	10.2	219
93	Biomassâ€Derived Poly(Furfuryl Alcohol)–Protected Aluminum Anode for Lithiumâ€lon Batteries. Energy Technology, 2019, 7, 1800995.	1.8	13
94	Highâ€Performance Cathode Based on Selfâ€Templated 3D Porous Microcrystalline Carbon with Improved Anion Adsorption and Intercalation. Advanced Functional Materials, 2019, 29, 1806722.	7.8	83
95	Sodiumâ€lon Hybrid Battery Combining an Anionâ€lntercalation Cathode with an Adsorptionâ€Type Anode for Enhanced Rate and Cycling Performance. Batteries and Supercaps, 2019, 2, 440-447.	2.4	46
96	Electrostatic self-assembly seeding strategy to improve machining performance of nanocrystalline diamond coated cutting tools. Surface and Coatings Technology, 2019, 357, 870-878.	2.2	22
97	A Highâ€Performance Dualâ€Ion Battery Enabled by Conversionâ€Type Manganese Silicate Anodes with Enhanced Ion Accessibility. ChemElectroChem, 2019, 6, 1040-1046.	1.7	10
98	Rechargeable batteries based on anion intercalation graphite cathodes. Energy Storage Materials, 2019, 16, 65-84.	9.5	183
99	Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nature Chemistry, 2018, 10, 667-672.	6.6	971
100	TiB2 barrier interlayer approach for HFCVD diamond deposition onto cemented carbide tools. Diamond and Related Materials, 2018, 83, 126-133.	1.8	21
101	Penneâ€Like MoS ₂ /Carbon Nanocomposite as Anode for Sodiumâ€Ionâ€Based Dualâ€Ion Battery. Small, 2018, 14, e1703951.	5.2	106
102	A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Storage Materials, 2018, 13, 1-7.	9.5	421
103	Controlling Directional Liquid Motion on Micro- and Nanocrystalline Diamond/β-SiC Composite Gradient Films. Langmuir, 2018, 34, 1419-1428.	1.6	16
104	A Novel Calciumâ€lon Battery Based on Dualâ€Carbon Configuration with High Working Voltage and Long Cycling Life. Advanced Science, 2018, 5, 1701082.	5.6	97
105	A Review on the Features and Progress of Dualâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1703320.	10.2	281
106	Core–Shell Aluminum@Carbon Nanospheres for Dualâ€ŀon Batteries with Excellent Cycling Performance under High Rates. Advanced Energy Materials, 2018, 8, 1701967.	10.2	87
107	Innenrücktitelbild: A Multi-Ion Strategy towards Rechargeable Sodium-Ion Full Batteries with High Working Voltage and Rate Capability (Angew. Chem. 50/2018). Angewandte Chemie, 2018, 130, 16807-16807.	1.6	0
108	Potassium Dual-Ion Hybrid Batteries with Ultrahigh Rate Performance and Excellent Cycling Stability. ACS Applied Materials & Interfaces, 2018, 10, 42294-42300.	4.0	52

#	Article	IF	CITATIONS
109	Heterostructure Manipulation <i>via in Situ</i> Localized Phase Transformation for High-Rate and Highly Durable Lithium Ion Storage. ACS Nano, 2018, 12, 10430-10438.	7.3	138
110	A Multiâ€ion Strategy towards Rechargeable Sodiumâ€ion Full Batteries with High Working Voltage and Rate Capability. Angewandte Chemie - International Edition, 2018, 57, 16370-16374.	7.2	114
111	A Multiâ€ion Strategy towards Rechargeable Sodiumâ€ion Full Batteries with High Working Voltage and Rate Capability. Angewandte Chemie, 2018, 130, 16608-16612.	1.6	28
112	Hierarchical T-Nb ₂ O ₅ nanostructure with hybrid mechanisms of intercalation and pseudocapacitance for potassium storage and high-performance potassium dual-ion batteries. Journal of Materials Chemistry A, 2018, 6, 17889-17895.	5.2	112
113	A Flexible Dualâ€Ion Battery Based on PVDFâ€HFPâ€Modified Gel Polymer Electrolyte with Excellent Cycling Performance and Superior Rate Capability. Advanced Energy Materials, 2018, 8, 1801219.	10.2	243
114	Adherent and low friction nanocrystalline diamond films via adsorbing organic molecules in self-assembly seeding process. Applied Surface Science, 2018, 456, 75-82.	3.1	18
115	Bubbleâ€Sheet‣ike Interface Design with an Ultrastable Solid Electrolyte Layer for Highâ€Performance Dualâ€Ion Batteries. Advanced Materials, 2017, 29, 1606805.	11.1	134
116	Integrated Configuration Design for Ultrafast Rechargeable Dualâ€Ion Battery. Advanced Energy Materials, 2017, 7, 1700913.	10.2	92
117	Enhancing the colloidal stability of detonation synthesized diamond particles in aqueous solutions by adsorbing organic mono-, bi- and tridentate molecules. Journal of Colloid and Interface Science, 2017, 499, 102-109.	5.0	29
118	A Novel Potassiumâ€ionâ€Based Dualâ€ion Battery. Advanced Materials, 2017, 29, 1700519.	11.1	508
119	A Novel and Generalized Lithiumâ€lonâ€Battery Configuration utilizing Al Foil as Both Anode and Current Collector for Enhanced Energy Density. Advanced Materials, 2017, 29, 1604219.	11.1	128
120	A Novel Tinâ€Graphite Dualâ€Ion Battery Based on Sodiumâ€Ion Electrolyte with High Energy Density. Advanced Energy Materials, 2017, 7, 1601963.	10.2	223
121	Lowâ€Cost Metallic Anode Materials for High Performance Rechargeable Batteries. Advanced Energy Materials, 2017, 7, 1700536.	10.2	171
122	A Dual arbon Battery Based on Potassiumâ€ion Electrolyte. Advanced Energy Materials, 2017, 7, 1700920.	10.2	242
123	Enhanced nucleation of diamond on three dimensional tools via stabilized colloidal nanodiamond in electrostatic self-assembly seeding process. Journal of Colloid and Interface Science, 2017, 506, 543-552.	5.0	25
124	Multifunctional Electrode Design Consisting of 3D Porous Separator Modulated with Patterned Anode for Highâ€Performance Dualâ€ion Batteries. Advanced Functional Materials, 2017, 27, 1703035.	7.8	56
125	A Novel Aluminum–Graphite Dualâ€ion Battery. Advanced Energy Materials, 2016, 6, 1502588.	10.2	1,079
126	Riceâ€like Sulfur/Polyaniline Nanorods Wrapped with Reduced Graphene Oxide Nanosheets as Highâ€Performance Cathode for Lithium–Sulfur Batteries. ChemElectroChem, 2016, 3, 999-1005.	1.7	15

#	Article	IF	CITATIONS
127	In-situ assembly of three-dimensional MoS2 nanoleaves/carbon nanofiber composites derived from bacterial cellulose as flexible and binder-free anodes for enhanced lithium-ion batteries. Electrochimica Acta, 2016, 211, 404-410.	2.6	60
128	Carbon oated Porous Aluminum Foil Anode for Highâ€Rate, Longâ€Term Cycling Stability, and High Energy Density Dualâ€Ion Batteries. Advanced Materials, 2016, 28, 9979-9985.	11.1	404
129	A Dualâ€Ion Battery Constructed with Aluminum Foil Anode and Mesocarbon Microbead Cathode via an Alloying/Intercalation Process in an Ionic Liquid Electrolyte. Advanced Materials Interfaces, 2016, 3, 1600605.	1.9	93
130	Grapheneâ€Nanowallâ€Decorated Carbon Felt with Excellent Electrochemical Activity Toward VO ₂ ⁺ /VO ²⁺ Couple for All Vanadium Redox Flow Battery. Advanced Science, 2016, 3, 1500276.	5.6	152
131	Solvothermal synthesis of Na2Ti3O7 nanowires embedded in 3D graphene networks as an anode for high-performance sodium-ion batteries. Electrochimica Acta, 2016, 211, 430-436.	2.6	63
132	Uniform Ultrasmall Manganese Monoxide Nanoparticle/Carbon Nanocomposite as a High-Performance Anode for Lithium Storage. Electrochimica Acta, 2016, 196, 634-641.	2.6	26
133	An array of Eiffel-tower-shape AlN nanotips and its field emission properties. Applied Physics Letters, 2005, 86, 233104.	1.5	87
134	Concentrated Electrolyte for Highâ€performance Caâ€ion Battery based on Organic Anode and Graphite Cathode. Angewandte Chemie, 0, , .	1.6	4
135	Unusual Size Effect in Ion and Charge Transport in Micronâ€sized Particulate Aluminum Anodes of Lithiumâ€ion Batteries. Angewandte Chemie, 0, , .	1.6	0