Céline Laroche

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8476325/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnetic Field Action on Limnospira indica PCC8005 Cultures: Enhancement of Biomass Yield and Protein Content. Applied Sciences (Switzerland), 2022, 12, 1533.	1.3	3
2	Exploring the Diversity of Red Microalgae for Exopolysaccharide Production. Marine Drugs, 2022, 20, 246.	2.2	12
3	Exopolysaccharides from Microalgae and Cyanobacteria: Diversity of Strains, Production Strategies, and Applications. Marine Drugs, 2022, 20, 336.	2.2	46
4	Potential of Exopolysaccharide from Porphyridium marinum to Contend with Bacterial Proliferation, Biofilm Formation, and Breast Cancer. Marine Drugs, 2021, 19, 66.	2.2	26
5	A New, Quick, and Simple Protocol to Evaluate Microalgae Polysaccharide Composition. Marine Drugs, 2021, 19, 101.	2.2	13
6	Static Magnetic Fields Effects on Polysaccharides Production by Different Microalgae Strains. Applied Sciences (Switzerland), 2021, 11, 5299.	1.3	20
7	Arthrospira platensis as a Feasible Feedstock for Bioethanol Production. Applied Sciences (Switzerland), 2021, 11, 6756.	1.3	9
8	Polyethyleneimine as a tool for compounds fractionation by flocculation in a microalgae biorefinery context. Bioresource Technology, 2020, 315, 123857.	4.8	2
9	Limnospira indica PCC8005 growth in photobioreactor: model and simulation of the ISS and ground experiments. Life Sciences in Space Research, 2020, 25, 53-65.	1.2	32
10	Microalgal Biomass of Industrial Interest: Methods of Characterization. , 2020, , 537-639.		4
11	Screening of marine microalgae: Investigation of new exopolysaccharide producers. Algal Research, 2019, 44, 101711.	2.4	67
12	Optimal cultivation towards enhanced biomass and floridean starch production by Porphyridium marinum. International Journal of Biological Macromolecules, 2019, 129, 152-161.	3.6	31
13	Characterization of the polysaccharides chemical diversity of the cyanobacteria Arthrospira platensis. Algal Research, 2019, 38, 101426.	2.4	52
14	New horizons in culture and valorization of red microalgae. Biotechnology Advances, 2019, 37, 193-222.	6.0	85
15	The red microalga Flintiella sanguinaria as a new exopolysaccharide producer. Journal of Applied Phycology, 2018, 30, 2803-2814.	1.5	23
16	Structural characterization and thermal behavior of a gum extracted from Ferula assa foetida L Carbohydrate Polymers, 2018, 181, 426-432.	5.1	25
17	Enhanced B-phycoerythrin production by the red microalga Porphyridium marinum: A powerful agent in industrial applications. International Journal of Biological Macromolecules, 2018, 120, 2106-2114.	3.6	38
18	Extraction and characterization of an alginate from the Iranian brown seaweed Nizimuddinia zanardini. International Journal of Biological Macromolecules, 2018, 118, 1073-1081.	3.6	60

CéLINE LAROCHE

#	Article	IF	CITATIONS
19	Rheological and functional properties of asafoetida gum. International Journal of Biological Macromolecules, 2018, 118, 1168-1173.	3.6	15
20	Bioactivity of Chitosan and Its Derivatives. Current Organic Chemistry, 2018, 22, 641-667.	0.9	22
21	Effects of nutritional conditions on growth and biochemical composition of Tetraselmis sp Lipids in Health and Disease, 2017, 16, 41.	1.2	49
22	Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnology Advances, 2016, 34, 1159-1179.	6.0	310
23	Improvement of exopolysaccharide production by Porphyridium marinum. Bioresource Technology, 2016, 213, 231-238.	4.8	70
24	Haematococcus pluvialis soluble proteins: Extraction, characterization, concentration/fractionation and emulsifying properties. Bioresource Technology, 2016, 200, 147-152.	4.8	67
25	Understanding the effect of cell disruption methods on the diffusion of Chlorella vulgaris proteins and pigments in the aqueous phase. Algal Research, 2015, 8, 61-68.	2.4	91
26	Structural Characterization and Biological Activities of Polysaccharides from Olive Mill Wastewater. Applied Biochemistry and Biotechnology, 2015, 177, 431-445.	1.4	24
27	Antimicrosporidian activity of sulphated polysaccharides from algae and their potential to control honeybee nosemosis. Carbohydrate Polymers, 2015, 133, 213-220.	5.1	52
28	Polysaccharide-layered double hydroxide–aldolase biohybrid beads for biocatalysed CC bond formation. Journal of Molecular Catalysis B: Enzymatic, 2015, 122, 204-211.	1.8	11
29	Galactans and Its Applications. , 2015, , 753-794.		2
30	Release of hydro-soluble microalgal proteins using mechanical and chemical treatments. Algal Research, 2014, 3, 55-60.	2.4	70
31	Aqueous extraction of proteins from microalgae: Effect of different cell disruption methods. Algal Research, 2014, 3, 61-65.	2.4	256
32	Extraction and fractionation of polysaccharides and B-phycoerythrin from the microalga Porphyridium cruentum by membrane technology. Algal Research, 2014, 5, 258-263.	2.4	94
33	Optimisation of culture parameters for exopolysaccharides production by the microalga Rhodella violacea. Bioresource Technology, 2013, 146, 732-735.	4.8	50
34	Separation and fractionation of exopolysaccharides from Porphyridium cruentum. Bioresource Technology, 2013, 145, 345-350.	4.8	124
35	Rheological Behavior and Non-enzymatic Degradation of a Sulfated Galactan from Halymenia durvillei (Halymeniales, Rhodophyta). Applied Biochemistry and Biotechnology, 2012, 167, 1303-1313.	1.4	13
36	A new tool to detect high viscous exopolymers from microalgae. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 319-326.	1.4	14

Céline Laroche

#	Article	IF	CITATIONS
37	A new method to screen polysaccharide cleavage enzymes. Enzyme and Microbial Technology, 2011, 48, 248-252.	1.6	11
38	Extraction and characterization of an alginate from the brown seaweed Sargassum turbinarioides Grunow. Journal of Applied Phycology, 2010, 22, 131-137.	1.5	187
39	Spectral kinetic modeling and longâ€ŧerm behavior assessment of <i>Arthrospira platensis</i> growth in photobioreactor under red (620 nm) light illumination. Biotechnology Progress, 2009, 25, 151-162.	1.3	25
40	Highly sulphated galactan from Halymenia durvillei (Halymeniales, Rhodophyta), a red seaweed of Madagascar marine coasts. International Journal of Biological Macromolecules, 2009, 45, 140-145.	3.6	44
41	Production and characterization of new families of polyglucuronic acids from TEMPO–NaOCl oxidation of curdlan. International Journal of Biological Macromolecules, 2009, 45, 458-462.	3.6	40
42	New Method Showing the Influence of Matrix Components in Leuconostoc mesenteroides Biofilm Formation. Applied Biochemistry and Biotechnology, 2008, 151, 364-370.	1.4	31
43	Enzymatic and chemical degradation of curdlan targeting the production of β-(1→3) oligoglucans. Carbohydrate Polymers, 2008, 71, 277-286.	5.1	34
44	New Developments and Prospective Applications for β (1,3) Glucans. Recent Patents on Biotechnology, 2007, 1, 59-73.	0.4	158
45	Water activity affects heat resistance of microorganisms in food powders. International Journal of Food Microbiology, 2005, 97, 307-315.	2.1	83
46	Phase transitions as a function of osmotic pressure in Saccharomyces cerevisiae whole cells, membrane extracts and phospholipid mixtures. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1669, 8-16.	1.4	27
47	Achievement of rapid osmotic dehydration at specific temperatures could maintain high Saccharomyces cerevisiae viability. Applied Microbiology and Biotechnology, 2003, 60, 743-747.	1.7	41
48	Unexpected Thermal Destruction of Dried, Glass Bead-Immobilized Microorganisms as a Function of Water Activity. Applied and Environmental Microbiology, 2003, 69, 3015-3019.	1.4	34
49	The effect of osmotic pressure on the membrane fluidity of Saccharomyces cerevisiae at different physiological temperatures. Applied Microbiology and Biotechnology, 2001, 56, 249-254.	1.7	102
50	Involvement of Acyl Coenzyme A Oxidase Isozymes in Biotransformation of Methyl Ricinoleate into γ-Decalactone by Yarrowia lipolytica. Applied and Environmental Microbiology, 2000, 66, 1233-1236.	1.4	50
51	Cloning, sequencing, and characterization of five genes coding for Acyl-CoA oxidase isozymes in the yeastYarrowia lipolytica. Cell Biochemistry and Biophysics, 1999, 31, 165-174.	0.9	47
52	Evaluation of Acyl Coenzyme A Oxidase (Aox) Isozyme Function in the n -Alkane-Assimilating Yeast Yarrowia lipolytica. Journal of Bacteriology, 1999, 181, 5140-5148.	1.0	120