
David L Vaux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8475324/publications.pdf Version: 2024-02-01

Ολνίο Ι. Μλιίχ

#	Article	IF	CITATIONS
1	Cell Death in the Origin and Treatment of Cancer. Molecular Cell, 2020, 78, 1045-1054.	4.5	182
2	Glucocorticoids can induce BIM to trigger apoptosis in the absence of BAX and BAK1. Cell Death and Disease, 2020, 11, 442.	2.7	11
3	Targeting triple-negative breast cancers with the Smac-mimetic birinapant. Cell Death and Differentiation, 2020, 27, 2768-2780.	5.0	31
4	The 2019 Lasker Award: T cells and B cells, whose life and death are essential for function of the immune system. Cell Death and Differentiation, 2019, 26, 2513-2515.	5.0	1
5	Activated MLKL attenuates autophagy following its translocation to intracellular membranes. Journal of Cell Science, 2019, 132, .	1.2	45
6	In the absence of apoptosis, myeloid cells arrest when deprived of growth factor, but remain viable by consuming extracellular glucose. Cell Death and Differentiation, 2019, 26, 2074-2085.	5.0	0
7	Viewing BCL2 and cell death control from an evolutionary perspective. Cell Death and Differentiation, 2018, 25, 13-20.	5.0	83
8	Autophagy induced during apoptosis degrades mitochondria and inhibits type I interferon secretion. Cell Death and Differentiation, 2018, 25, 784-796.	5.0	49
9	Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E961-E969.	3.3	337
10	XIAP Loss Triggers RIPK3- and Caspase-8-Driven IL-1β Activation and Cell Death as a Consequence of TLR-MyD88-Induced cIAP1-TRAF2 Degradation. Cell Reports, 2017, 20, 668-682.	2.9	112
11	BAX-BAK1-independent LC3B lipidation by BH3 mimetics is unrelated to BH3 mimetic activity and has only minimal effects on autophagic flux. Autophagy, 2016, 12, 1083-1093.	4.3	16
12	Cell death is not essential for caspase-1-mediated interleukin- $1\hat{l}^2$ activation and secretion. Cell Death and Differentiation, 2016, 23, 1827-1838.	5.0	76
13	The caspase-8 inhibitor emricasan combines with the SMAC mimetic birinapant to induce necroptosis and treat acute myeloid leukemia. Science Translational Medicine, 2016, 8, 339ra69.	5.8	140
14	Australia needs an Ombudsman or Office for Research Integrity. Internal Medicine Journal, 2016, 46, 1233-1235.	0.5	3
15	Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nature Reviews Cancer, 2016, 16, 99-109.	12.8	596
16	Scientific Misconduct: Falsification, Fabrication, and Misappropriation of Credit. , 2016, , 895-911.		7
17	Evolutionary divergence of the necroptosis effector MLKL. Cell Death and Differentiation, 2016, 23, 1185-1197.	5.0	93
18	Targeting p38 or MK2 Enhances the Anti-Leukemic Activity of Smac-Mimetics. Cancer Cell, 2016, 29, 145-158.	7.7	93

#	Article	IF	CITATIONS
19	Cycloheximide Can Induce Bax/Bak Dependent Myeloid Cell Death Independently of Multiple BH3-Only Proteins. PLoS ONE, 2016, 11, e0164003.	1.1	8
20	Response to Heard etÂal. EMBO Journal, 2015, 34, 2396-2397.	3.5	5
21	RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nature Communications, 2015, 6, 6282.	5.8	514
22	IAP gene deletion and conditional knockout models. Seminars in Cell and Developmental Biology, 2015, 39, 97-105.	2.3	32
23	Scientific Misconduct: Falsification, Fabrication, and Misappropriation of Credit. , 2015, , 1-13.		1
24	TRAF2 regulates TNF and NF-κB signalling to suppress apoptosis and skin inflammation independently of Sphingosine kinase 1. ELife, 2015, 4, .	2.8	75
25	TNFR1-dependent cell death drives inflammation in Sharpin-deficient mice. ELife, 2014, 3, .	2.8	232
26	BCL2 and related prosurvival proteins require BAK1 and BAX to affect autophagy. Autophagy, 2014, 10, 1474-1475.	4.3	59
27	cIAPs and XIAP regulate myelopoiesis through cytokine production in an RIPK1- and RIPK3-dependent manner. Blood, 2014, 123, 2562-2572.	0.6	145
28	Necroptosis induced by RIPK3 requires MLKL but not Drp1. Cell Death and Disease, 2014, 5, e1086-e1086.	2.7	89
29	IAPs and Necroptotic Cell Death. , 2014, , 57-77.		3
30	Prosurvival Bcl-2 family members affect autophagy only indirectly, by inhibiting Bax and Bak. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8512-8517.	3.3	166
31	RIPK1 Regulates RIPK3-MLKL-Driven Systemic Inflammation and Emergency Hematopoiesis. Cell, 2014, 157, 1175-1188.	13.5	492
32	Mitochondrial apoptosis is dispensable for <scp>NLRP</scp> 3 inflammasome activation but nonâ€apoptotic caspaseâ€8 is required for inflammasome priming. EMBO Reports, 2014, 15, 982-990.	2.0	189
33	RIPK1- and RIPK3-induced cell death mode is determined by target availability. Cell Death and Differentiation, 2014, 21, 1600-1612.	5.0	129
34	Basic Statistics in Cell Biology. Annual Review of Cell and Developmental Biology, 2014, 30, 23-37.	4.0	15
35	193. Cytokine, 2014, 70, 74.	1.4	0

#	Article	IF	CITATIONS
37	Historical Perspective: The Seven Ages of Cell Death Research. , 2014, , 1-14.		Ο
38	TNF can activate RIPK3 and cause programmed necrosis in the absence of RIPK1. Cell Death and Disease, 2013, 4, e465-e465.	2.7	130
39	Another twist in the on and off affair between cell suicide and inflammation. Cell Death and Differentiation, 2013, 20, 974-975.	5.0	1
40	IAPs limit activation of RIP kinases by TNF receptor 1 during development. EMBO Journal, 2012, 31, 1679-1691.	3.5	180
41	In mouse embryonic fibroblasts, neither caspase-8 nor cellular FLICE-inhibitory protein (FLIP) is necessary for TNF to activate NF-κB, but caspase-8 is required for TNF to cause cell death, and induction of FLIP by NF-κB is required to prevent it. Cell Death and Differentiation, 2012, 19, 808-815.	5.0	15
42	Know when your numbers are significant. Nature, 2012, 492, 180-181.	13.7	113
43	Replicates and repeats—what is the difference and is it significant?. EMBO Reports, 2012, 13, 291-296.	2.0	118
44	Integrity atCancer Medicine: the research we publish, how we evaluate it, and what we ask of our authors. Cancer Medicine, 2012, 1, 2-4.	1.3	0
45	Deletion of cIAP1 and cIAP2 in murine B lymphocytes constitutively activates cell survival pathways and inactivates the germinal center response. Blood, 2011, 117, 4041-4051.	0.6	92
46	Double blind review. Learned Publishing, 2011, 24, 165-167.	0.8	3
47	A biased comment on double-blind review. British Journal of Dermatology, 2011, 165, 454-455.	1.4	3
48	Apoptogenic factors released from mitochondria. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 546-550.	1.9	95
49	In defense of the somatic mutation theory of cancer. BioEssays, 2011, 33, 341-343.	1.2	73
50	Response to "The tissue organization field theory of cancer: A testable replacement for the somatic mutation theory―DOI: 10.1002/bies.201100025. BioEssays, 2011, 33, 660-661.	1.2	10
51	In TNF-stimulated Cells, RIPK1 Promotes Cell Survival by Stabilizing TRAF2 and cIAP1, which Limits Induction of Non-canonical NF-κB and Activation of Caspase-8. Journal of Biological Chemistry, 2011, 286, 13282-13291.	1.6	81
52	Smac Mimetics Activate the E3 Ligase Activity of cIAP1 Protein by Promoting RING Domain Dimerization. Journal of Biological Chemistry, 2011, 286, 17015-17028.	1.6	142
53	RIPK1 is not essential for TNFR1-induced activation of NF-κB. Cell Death and Differentiation, 2010, 17, 482-487.	5.0	162
54	TAK1 Is Required for Survival of Mouse Fibroblasts Treated with TRAIL, and Does So by NF-κB Dependent Induction of cFLIPL. PLoS ONE, 2010, 5, e8620.	1.1	19

#	Article	IF	CITATIONS
55	Tumor Necrosis Factor (TNF) Signaling, but Not TWEAK (TNF-like Weak Inducer of Apoptosis)-triggered cIAP1 (Cellular Inhibitor of Apoptosis Protein 1) Degradation, Requires cIAP1 RING Dimerization and E2 Binding. Journal of Biological Chemistry, 2010, 285, 17525-17536.	1.6	37
56	Inhibition of Bak Activation by VDAC2 Is Dependent on the Bak Transmembrane Anchor. Journal of Biological Chemistry, 2010, 285, 36876-36883.	1.6	83
57	Asymmetric Recruitment of cIAPs by TRAF2. Journal of Molecular Biology, 2010, 400, 8-15.	2.0	72
58	TRAF2 Must Bind to Cellular Inhibitors of Apoptosis for Tumor Necrosis Factor (TNF) to Efficiently Activate NF-κB and to Prevent TNF-induced Apoptosis. Journal of Biological Chemistry, 2009, 284, 35906-35915.	1.6	202
59	CARP2 deficiency does not alter induction of NF-κB by TNFα. Current Biology, 2009, 19, R15-R17.	1.8	12
60	Puma indirectly activates Bax to cause apoptosis in the absence of Bid or Bim. Cell Death and Differentiation, 2009, 16, 555-563.	5.0	67
61	Identification of an Xiap-Like Pseudogene on Mouse Chromosome 7. PLoS ONE, 2009, 4, e8078.	1.1	1
62	Inhibitor of Apoptosis (IAP) proteins as drug targets for the treatment of cancer. F1000 Biology Reports, 2009, 1, 79.	4.0	5
63	A tumour suppressor function of caspase-8?. Cell Death and Differentiation, 2008, 15, 1337-1338.	5.0	3
64	ABT-737, proving to be a great tool even before it is proven in the clinic. Cell Death and Differentiation, 2008, 15, 807-808.	5.0	10
65	Cytoplasmic p53 is not required for PUMA-induced apoptosis. Cell Death and Differentiation, 2008, 15, 213-215.	5.0	25
66	Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans. Cell Death and Differentiation, 2008, 15, 841-848.	5.0	256
67	Triggering of Apoptosis by Puma Is Determined by the Threshold Set by Prosurvival Bcl-2 Family Proteins. Journal of Molecular Biology, 2008, 384, 313-323.	2.0	27
68	TWEAK-FN14 signaling induces lysosomal degradation of a cIAP1–TRAF2 complex to sensitize tumor cells to TNFα. Journal of Cell Biology, 2008, 182, 171-184.	2.3	226
69	Structures of the cIAP2 RING Domain Reveal Conformational Changes Associated with Ubiquitin-conjugating Enzyme (E2) Recruitment. Journal of Biological Chemistry, 2008, 283, 31633-31640.	1.6	153
70	TWEAK-FN14 signaling induces lysosomal degradation of a cIAP1–TRAF2 complex to sensitize tumor cells to TNFα. Journal of Experimental Medicine, 2008, 205, i18-i18.	4.2	0
71	IAP Antagonists Target cIAP1 to Induce TNFα-Dependent Apoptosis. Cell, 2007, 131, 682-693.	13.5	993
72	Identification of mammalian mitochondrial proteins that interact with IAPs via N-terminal IAP binding motifs. Cell Death and Differentiation, 2007, 14, 348-357.	5.0	83

#	Article	IF	CITATIONS
73	Caspase inhibitors: viral, cellular and chemical. Cell Death and Differentiation, 2007, 14, 73-78.	5.0	165
74	Error bars in experimental biology. Journal of Cell Biology, 2007, 177, 7-11.	2.3	736
75	Error bars in experimental biology. Journal of Experimental Medicine, 2007, 204, i11-i11.	4.2	Ο
76	Cell death provoked by loss of interleukin-3 signaling is independent of Bad, Bim, and PI3 kinase, but depends in part on Puma. Blood, 2006, 108, 1461-1468.	0.6	64
77	Apoptosis and Autoimmunity: Lymphoproliferative Syndromes. , 2006, , 987-992.		0
78	Association of mammalian sterile twenty kinases, Mst1 and Mst2, with hSalvador via C-terminal coiled-coil domains, leads to its stabilization and phosphorylation. FEBS Journal, 2006, 273, 4264-4276.	2.2	234
79	Human Bcl-2 cannot directly inhibit the Caenorhabditis elegans Apaf-1 homologue CED-4, but can interact with EGL-1. Journal of Cell Science, 2006, 119, 2572-2582.	1.2	23
80	IAPs, RINGs and ubiquitylation. Nature Reviews Molecular Cell Biology, 2005, 6, 287-297.	16.1	558
81	XIAP-deficiency leads to delayed lobuloalveolar development in the mammary gland. Cell Death and Differentiation, 2005, 12, 87-90.	5.0	58
82	IAPs – the ubiquitin connection. Cell Death and Differentiation, 2005, 12, 1205-1207.	5.0	36
83	The mitochondrial death squad: hardened killers or innocent bystanders?. Current Opinion in Cell Biology, 2005, 17, 626-630.	2.6	110
84	Mature DIABLO/Smac Is Produced by the IMP Protease Complex on the Mitochondrial Inner Membrane. Molecular Biology of the Cell, 2005, 16, 2926-2933.	0.9	89
85	Determination of cell survival by RING-mediated regulation of inhibitor of apoptosis (IAP) protein abundance. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16182-16187.	3.3	133
86	Survival Factors. , 2005, , 255-273.		0
87	Bcl-2–regulated apoptosis and cytochrome c release can occur independently of both caspase-2 and caspase-9. Journal of Cell Biology, 2004, 165, 775-780.	2.3	91
88	Unlike Diablo/smac, Grim Promotes Global Ubiquitination and Specific Degradation of X Chromosome-linked Inhibitor of Apoptosis (XIAP) and Neither Cause Apoptosis. Journal of Biological Chemistry, 2004, 279, 4313-4321.	1.6	32
89	Apaf-1 and caspase-9 accelerate apoptosis, but do not determine whether factor-deprived or drug-treated cells die. Journal of Cell Biology, 2004, 165, 835-842.	2.3	169
90	Early work on the function of Bcl-2, an interview with David Vaux. Cell Death and Differentiation, 2004, 11, S28-S32.	5.0	7

#	Article	IF	CITATIONS
91	Error message. Nature, 2004, 428, 799-799.	13.7	18
92	Apoptosis in the development and treatment of cancer. Carcinogenesis, 2004, 26, 263-270.	1.3	324
93	Bax and Bcl2 Cell Death Enhancers and Inhibitors. , 2004, , 152-154.		0
94	Alterations in the apoptotic machinery and their potential role in anticancer drug resistance. Oncogene, 2003, 22, 7414-7430.	2.6	253
95	HtrA2/Omi, a Sheep in Wolf's Clothing. Cell, 2003, 115, 251-253.	13.5	43
96	Mammalian mitochondrial IAP binding proteins. Biochemical and Biophysical Research Communications, 2003, 304, 499-504.	1.0	213
97	HtrA2 Promotes Cell Death through Its Serine Protease Activity and Its Ability to Antagonize Inhibitor of Apoptosis Proteins. Journal of Biological Chemistry, 2002, 277, 445-454.	1.6	484
98	A novel Apaf-1–independent putative caspase-2 activation complex. Journal of Cell Biology, 2002, 159, 739-745.	2.3	151
99	APOPTOSIS: A Cinderella Caspase Takes Center Stage. Science, 2002, 297, 1290-1291.	6.0	111
100	Tissue distribution of Diablo/Smac revealed by monoclonal antibodies. Cell Death and Differentiation, 2002, 9, 710-716.	5.0	16
101	The anti-apoptotic activity of XIAP is retained upon mutation of both the caspase 3– and caspase 9–interacting sites. Journal of Cell Biology, 2002, 157, 115-124.	2.3	124
102	Apoptosis and toxicology—what relevance?. Toxicology, 2002, 181-182, 3-7.	2.0	25
103	Apoptosis Timeline. Cell Death and Differentiation, 2002, 9, 349-354.	5.0	49
104	Caspase-2 is not required for thymocyte or neuronal apoptosis even though cleavage of caspase-2 is dependent on both Apaf-1 and caspase-9. Cell Death and Differentiation, 2002, 9, 832-841.	5.0	170
105	Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature, 2002, 419, 634-637.	13.7	517
106	Cell death regulation by the mammalian IAP antagonist Diablo/Smac. Apoptosis: an International Journal on Programmed Cell Death, 2002, 7, 163-166.	2.2	144
107	The buzz about BAFF. Journal of Clinical Investigation, 2002, 109, 17-18.	3.9	11
108	The buzz about BAFF. Journal of Clinical Investigation, 2002, 109, 17-18.	3.9	8

#	Article	IF	CITATIONS
109	TNF AND CD95 PROMOTE IL-8 GENE TRANSACTIVATION VIA INDEPENDENT ELEMENTS IN COLON CARCINOMA CELLS. Cytokine, 2001, 15, 108-112.	1.4	2
110	Inhibitor of apoptosis proteins and their relatives: IAPs and other BIRPs. Genome Biology, 2001, 2, reviews3009.1.	13.9	289
111	Direct inhibition of caspase 3 is dispensable for the anti-apoptotic activity of XIAP. EMBO Journal, 2001, 20, 3114-3123.	3.5	101
112	In support of errors. Current Biology, 2001, 11, R288.	1.8	0
113	Diablo Promotes Apoptosis by Removing Miha/Xiap from Processed Caspase 9. Journal of Cell Biology, 2001, 152, 483-490.	2.3	188
114	Two kinds of BIR-containing protein - inhibitors of apoptosis, or required for mitosis. Journal of Cell Science, 2001, 114, 1821-7.	1.2	85
115	Structural analysis of caspase recruitment domains (CARDs). Biochemical Society Transactions, 2000, 28, A456-A456.	1.6	0
116	Apoptosis genes and autoimmunity. Current Opinion in Immunology, 2000, 12, 719-724.	2.4	97
117	Sequence as well as functional similarity for DIABLO/Smac and Grim, Reaper and Hid?. Cell Death and Differentiation, 2000, 7, 1275-1275.	5.0	44
118	Science down under. Current Biology, 2000, 10, R321.	1.8	0
119	Survivin and the inner centromere protein INCENP show similar cell-cycle localization and gene knockout phenotype. Current Biology, 2000, 10, 1319-1328.	1.8	497
120	The Survivin-like C. elegans BIR-1 Protein Acts with the Aurora-like Kinase AIR-2 to Affect Chromosomes and the Spindle Midzone. Molecular Cell, 2000, 6, 211-223.	4.5	255
121	Identification of DIABLO, a Mammalian Protein that Promotes Apoptosis by Binding to and Antagonizing IAP Proteins. Cell, 2000, 102, 43-53.	13.5	2,191
122	Role for yeast inhibitor of apoptosis (IAP)-like proteins in cell division. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 10170-10175.	3.3	186
123	Signalling by CD95 and TNF receptors: Not only life and death. Immunology and Cell Biology, 1999, 77, 41-46.	1.0	71
124	Solution structure of a baculoviral inhibitor of apoptosis (IAP) repeat. Nature Structural Biology, 1999, 6, 648-651.	9.7	165
125	Caspases and apoptosis – biology and terminology. Cell Death and Differentiation, 1999, 6, 493-494.	5.0	53
126	Solution structure and mutagenesis of the caspase recruitment domain (CARD) from Apaf-1. Cell Death and Differentiation, 1999, 6, 1125-1132.	5.0	47

#	Article	IF	CITATIONS
127	Caspase inhibitors. Cell Death and Differentiation, 1999, 6, 1081-1086.	5.0	415
128	Inhibition of apoptosis and clonogenic survival of cells expressing crmA variants: optimal caspase substrates are not necessarily optimal inhibitors. EMBO Journal, 1999, 18, 330-338.	3.5	75
129	Cell Death in Development. Cell, 1999, 96, 245-254.	13.5	1,434
130	Molecular Mechanisms of Apoptosis: An Overview. Results and Problems in Cell Differentiation, 1999, 23, 11-24.	0.2	5
131	Genes Inhibiting Caspases Rescue Neuronal Cells from Apoptosis and Allow Functional Survival of Cells Exposed to a Death Stimulus. Pediatric Research, 1999, 45, 195A-195A.	1.1	0
132	Anti-apoptotic potential of insect cellular and viral IAPs in mammalian cells. Cell Death and Differentiation, 1998, 5, 569-576.	5.0	40
133	Cell death: Shadow Baxing. Current Biology, 1998, 8, R528-R531.	1.8	12
134	Conservation of baculovirus inhibitor of apoptosis repeat proteins (BIRPs) in viruses, nematodes, vertebrates and yeasts. Trends in Biochemical Sciences, 1998, 23, 159-162.	3.7	189
135	Immunopathology of apoptosis ?introduction and overview. Seminars in Immunopathology, 1998, 19, 271-278.	4.0	18
136	Apoptosis and the immune system. British Medical Bulletin, 1997, 53, 591-603.	2.7	75
137	Requirements for Proteolysis during Apoptosis. Molecular and Cellular Biology, 1997, 17, 6502-6507.	1.1	22
138	Viral Inhibitors of Apoptosis. Vitamins and Hormones, 1997, 53, 175-193.	0.7	10
139	The role of the Bcl-2 family of apoptosis regulatory proteins in the immune system. Seminars in Immunology, 1997, 9, 25-33.	2.7	52
140	CED-4—The Third Horseman of Apoptosis. Cell, 1997, 90, 389-390.	13.5	112
141	Direct physical interaction between theCaenorhabditis elegansâ€~death proteins' CED-3 and CED-4. FEBS Letters, 1997, 406, 189-190.	1.3	82
142	Transgenic expression of CD95 ligand on islet cells induces a granulocytic infiltration but does not confer immune privilege upon islet allografts. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 3943-3947.	3.3	365
143	The role of the bcl-2/ced-9 gene family in cancer and general implications of defects in cell death control for tumourigenesis and resistance to chemotherapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 1997, 1333, F151-F178.	3.3	85
144	8 Apoptosis, haemopoiesis and leukaemogenesis. Best Practice and Research: Clinical Haematology, 1997, 10, 561-576.	1.1	12

#	Article	IF	CITATIONS
145	A chronology of cell death. Apoptosis: an International Journal on Programmed Cell Death, 1997, 2, 247-256.	2.2	13
146	Bcl-2 prevents apoptosis induced by perforin and granzyme B, but not that mediated by whole cytotoxic lymphocytes. Journal of Immunology, 1997, 158, 5783-90.	0.4	116
147	Cloning and expression of apoptosis inhibitory protein homologs that function to inhibit apoptosis and/or bind tumor necrosis factor receptor-associated factors Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 4974-4978.	3.3	489
148	CrmA expression in T lymphocytes of transgenic mice inhibits CD95 (Fas/APO-1)-transduced apoptosis, but does not cause lymphadenopathy or autoimmune disease EMBO Journal, 1996, 15, 5167-5176.	3.5	155
149	Inhibition of interleukin 1Â-converting enzyme-mediated apoptosis of mammalian cells by baculovirus IAP. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 13786-13790.	3.3	107
150	The molecular biology of apoptosis Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 2239-2244.	3.3	907
151	Molecular and clinical aspects of apoptosis. , 1996, 72, 37-50.		81
152	Activation of physiological cell death mechanisms by a necrosis-causing agent. , 1996, 34, 259-266.		21
153	CrmA expression in T lymphocytes of transgenic mice inhibits CD95 (Fas/APO-1)-transduced apoptosis, but does not cause lymphadenopathy or autoimmune disease. EMBO Journal, 1996, 15, 5167-76.	3.5	48
154	TRAF proteins and meprins share a conserved domain. Trends in Biochemical Sciences, 1996, 21, 244-5.	3.7	43
155	Apoptosis: A sticky business. Current Biology, 1995, 5, 622-624.	1.8	63
156	The medical significance of physiological cell death. Medicinal Research Reviews, 1995, 15, 299-311.	5.0	17
157	Ways around rejection. Nature, 1995, 377, 576-577.	13.7	24
158	Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists, 1994: HYPOTHESIS: APOPTOSIS CAUSED BY CYTOTOXINS REPRESENTS A DEFENSIVE RESPONSE THAT EVOLVED TO COMBAT INTRACELLULAR PATHOGENS. Clinical and Experimental Pharmacology and Physiology, 1995, 22, 861-863.	0.9	29
159	Cloning of Mouse RP-8 cDNA and Its Expression During Apoptosis of Lymphoid and Myeloid Cells. DNA and Cell Biology, 1995, 14, 189-193.	0.9	17
160	An end to the paper chase?. Trends in Biochemical Sciences, 1994, 19, 301-302.	3.7	1
161	Analysis of the Role of bcl-2 in Apoptosis. Immunological Reviews, 1994, 142, 127-139.	2.8	83
162	Expression of the integrin \$alpha;4\$beta;1 on melanoma cells can inhibit the invasive stage of metastasis formation. Cell, 1994, 77, 335-347.	13.5	220

#	Article	IF	CITATIONS
163	An evolutionary perspective on apoptosis. Cell, 1994, 76, 777-779.	13.5	757
164	Entamoeba histolytica: Target Cells Killed by Trophozoites Undergo DNA Fragmentation Which Is Not Blocked by Bcl-2. Experimental Parasitology, 1994, 79, 460-467.	0.5	102
165	Viral, worm and radical implications for apoptosis. Trends in Biochemical Sciences, 1994, 19, 99-100.	3.7	52
166	Expression of candidate cell death genes in cell lines during apoptosis. Biochemistry and Cell Biology, 1994, 72, 451-454.	0.9	2
167	A boom time for necrobiology. Current Biology, 1993, 3, 877-878.	1.8	17
168	Toward an understanding of the molecular mechanisms of physiological cell death Proceedings of the United States of America, 1993, 90, 786-789.	3.3	585
169	Neither macromolecular synthesis nor myc is required for cell death via the mechanism that can be controlled by Bcl-2 Molecular and Cellular Biology, 1993, 13, 7000-7005.	1.1	51
170	Neither Macromolecular Synthesis nor Myc Is Required for Cell Death via the Mechanism That Can Be Controlled by Bcl-2. Molecular and Cellular Biology, 1993, 13, 7000-7005.	1.1	22
171	Bcl-2 prevents death of factor-deprived cells but fails to prevent apoptosis in targets of cell mediated killing. International Immunology, 1992, 4, 821-824.	1.8	167
172	Prevention of programmed cell death in Caenorhabditis elegans by human bcl-2. Science, 1992, 258, 1955-1957.	6.0	588
173	Rapid recovery of DNA from agarose gels. Trends in Genetics, 1992, 8, 81-81.	2.9	8
174	The structure of an endocytosis signal. Trends in Cell Biology, 1992, 2, 189-192.	3.6	63
175	Enforced BCL2 expression in B-lymphoid cells prolongs antibody responses and elicits autoimmune disease Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 8661-8665.	3.3	815
176	In vivo expression of interleukin 5 induces an eosinophilia and expanded Ly-1B lineage populations. International Immunology, 1990, 2, 965-971.	1.8	44
177	Abnormalities of the Immune System Induced by Dysregulated bcl-2 Expression in Transgenic Mice. Current Topics in Microbiology and Immunology, 1990, 166, 175-181.	0.7	111
178	DNA fragmentation in cytolysis. Trends in Immunology, 1989, 10, 325.	7.5	9
179	Transgenic Mice as Models for the Development of Haemopoietic Neoplasia. , 1989, , 494-501.		0
180	Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature, 1988, 335, 440-442.	13.7	3,029

#	Article	IF	CITATIONS
181	Immunologic competence of B cells subjected to constitutive c-myc oncogene expression in immunoglobulin heavy chain enhancer myc transgenic mice. Journal of Immunology, 1987, 139, 3854-60.	0.4	15
182	Single cell studies on hapten-specific B lymphocytes: differential cloning efficiency of cells of various sizes. Journal of Immunology, 1983, 131, 554-60.	0.4	12
183	Proliferation and differentiation of single hapten-specific B lymphocytes is promoted by T-cell factor(s) distinct from T-cell growth factor Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 6350-6354.	3.3	64
184	Antibody production by single, hapten-specific B lymphocytes: an antigen-driven cloning system free of filler or accessory cells Proceedings of the National Academy of Sciences of the United States of America, 1981, 78, 7702-7706.	3.3	29
185	Tissue distribution of Diablo/Smac revealed by monoclonal antibodies. Cell Death and Differentiation, 0, 9, 710-716.	5.0	2