List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8475056/publications.pdf Version: 2024-02-01

MIRKO VIROLI

#	Article	IF	CITATIONS
1	Distributed runtime verification by past-CTL and the field calculus. Journal of Systems and Software, 2022, 187, 111251.	3.3	9
2	Digital Twins, Virtual Devices, and Augmentations for Self-Organising Cyber-Physical Collectives. Applied Sciences (Switzerland), 2022, 12, 349.	1.3	9
3	A Methodology and Simulation-Based Toolchain for Estimating Deployment Performance of Smart Collective Services at the Edge. IEEE Internet of Things Journal, 2022, 9, 20136-20148.	5.5	12
4	Towards Reinforcement Learning-based Aggregate Computing. Lecture Notes in Computer Science, 2022, , 72-91.	1.0	9
5	Partitioned integration and coordination via the self-organising coordination regions pattern. Future Generation Computer Systems, 2021, 114, 44-68.	4.9	36
6	Engineering collective intelligence at the edge with aggregate processes. Engineering Applications of Artificial Intelligence, 2021, 97, 104081.	4.3	36
7	Tuple-Based Coordination in Large-Scale Situated Systems. Lecture Notes in Computer Science, 2021, , 149-167.	1.0	3
8	ScaFi-Web: A Web-Based Application for Field-Based Coordination Programming. Lecture Notes in Computer Science, 2021, , 285-299.	1.0	5
9	Aggregate centrality measures for IoT-based coordination. Science of Computer Programming, 2021, 203, 102584.	1.5	3
10	A Programming Approach to Collective Autonomy. Journal of Sensor and Actuator Networks, 2021, 10, 27.	2.3	5
11	Adaptive distributed monitors of spatial properties for cyber–physical systems. Journal of Systems and Software, 2021, 175, 110908.	3.3	24
12	Augmented Collective Digital Twins for Self-Organising Cyber-Physical Systems. , 2021, , .		2
13	Towards Pulverised Architectures for Collective Adaptive Systems through Multi-Tier Programming. , 2021, , .		1
14	Optimal resilient distributed data collection in mobile edge environments. Computers and Electrical Engineering, 2021, 96, 107580.	3.0	13
15	Pulverization in Cyber-Physical Systems: Engineering the Self-Organizing Logic Separated from Deployment. Future Internet, 2020, 12, 203.	2.4	25
16	On the Social Implications of Collective Adaptive Systems. IEEE Technology and Society Magazine, 2020, 39, 36-46.	0.6	8
17	Collective Adaptive Systems as Coordination Media: The Case of Tuples in Space-Time. , 2020, , .		1
18	FScaFi : A Core Calculus for Collective Adaptive Systems Programming. Lecture Notes in Computer Science, 2020, , 344-360.	1.0	15

#	Article	IF	CITATIONS
19	Time-Fluid Field-Based Coordination. Lecture Notes in Computer Science, 2020, , 193-210.	1.0	ο
20	Resilient Distributed Collection Through Information Speed Thresholds. Lecture Notes in Computer Science, 2020, , 211-229.	1.0	2
21	Security in Collective Adaptive Systems: A Roadmap. , 2019, , .		4
22	Fluidware: An Approach Towards Adaptive and Scalable Programming of the IoT. Lecture Notes in Computer Science, 2019, , 411-427.	1.0	1
23	From distributed coordination to field calculus and aggregate computing. Journal of Logical and Algebraic Methods in Programming, 2019, 109, 100486.	0.4	44
24	Coordinating Computation at the Edge: a Decentralized, Self-Organizing, Spatial Approach. , 2019, , .		19
25	Towards Adaptive Flow Programming for the IoT: The Fluidware Approach. , 2019, , .		Ο
26	Engineering Resilient Collaborative Edge-Enabled IoT. , 2019, , .		6
27	Self-organising Coordination Regions: A Pattern for Edge Computing. Lecture Notes in Computer Science, 2019, , 182-199.	1.0	16
28	A development approach for collective opportunistic Edge-of-Things services. Information Sciences, 2019, 498, 154-169.	4.0	60
29	A Higher-Order Calculus of Computational Fields. ACM Transactions on Computational Logic, 2019, 20, 1-55.	0.7	55
30	Modelling and simulation of Opportunistic IoT Services with Aggregate Computing. Future Generation Computer Systems, 2019, 91, 252-262.	4.9	121
31	Aggregate Processes in Field Calculus. Lecture Notes in Computer Science, 2019, , 200-217.	1.0	11
32	The share Operator for Field-Based Coordination. Lecture Notes in Computer Science, 2019, , 54-71.	1.0	3
33	Big data from the cloud to the edge. , 2019, , .		Ο
34	Spatial Tuples: Augmenting reality with tuples. Expert Systems, 2018, 35, e12273.	2.9	2
35	Engineering Resilient Collective Adaptive Systems by Self-Stabilisation. ACM Transactions on Modeling and Computer Simulation, 2018, 28, 1-28.	0.6	68
36	Collective Abstractions and Platforms for Large-Scale Self-Adaptive IoT. , 2018, , .		7

#	Article	IF	CITATIONS
37	Transparent Protection of Aggregate Computations from Byzantine Behaviours via Blockchain. , 2018, ,		5
38	Distributed Real-Time Shortest-Paths Computations with the Field Calculus. , 2018, , .		3
39	Optimal single-path information propagation in gradient-based algorithms. Science of Computer Programming, 2018, 166, 146-166.	1.5	18
40	Towards attack-resistant Aggregate Computing using trust mechanisms. Science of Computer Programming, 2018, 167, 114-137.	1.5	21
41	From Field-Based Coordination to Aggregate Computing. Lecture Notes in Computer Science, 2018, , 252-279.	1.0	15
42	Programming Actor-Based Collective Adaptive Systems. Lecture Notes in Computer Science, 2018, , 94-122.	1.0	13
43	Space-Time Universality of Field Calculus. Lecture Notes in Computer Science, 2018, , 1-20.	1.0	16
44	Towards a Foundational API for Resilient Distributed Systems Design. , 2017, , .		8
45	Self-Adaptation to Device Distribution in the Internet of Things. ACM Transactions on Autonomous and Adaptive Systems, 2017, 12, 1-29.	0.4	29
46	Compositional Blocks for Optimal Self-Healing Gradients. , 2017, , .		31
47	Aggregate plans for multiagent systems. International Journal of Agent Oriented Software Engineering, 2017, 5, 336.	0.1	8
48	Optimally-Self-Healing Distributed Gradient Structures Through Bounded Information Speed. Lecture Notes in Computer Science, 2017, , 59-77.	1.0	8
49	Aggregate plans for multiagent systems. International Journal of Agent Oriented Software Engineering, 2017, 5, 336.	0.1	Ο
50	Spatial computing: introduction to the special issue. Knowledge Engineering Review, 2016, 31, 323-324.	2.1	0
51	Self-Adaptation to Device Distribution Changes. , 2016, , .		15
52	On execution platforms for large-scale aggregate computing. , 2016, , .		18
53	Towards Aggregate Programming in Scala. , 2016, , .		11
54	Spatial awareness in pervasive ecosystems. Knowledge Engineering Review, 2016, 31, 343-366.	2.1	3

#	Article	IF	CITATIONS
55	Run-Time Management of Computation Domains in Field Calculus. , 2016, , .		7
56	Improving Gossip Dynamics Through Overlapping Replicates. Lecture Notes in Computer Science, 2016, , 192-207.	1.0	15
57	A type-sound calculus of computational fields. Science of Computer Programming, 2016, 117, 17-44.	1.5	27
58	Smart Augmented Fields for Emergency Operations. Procedia Computer Science, 2015, 63, 392-399.	1.2	10
59	Programming very-large scale systems of wearables. , 2015, , .		0
60	Computational Fields Meet Augmented Reality: Perspectives and Challenges. , 2015, , .		0
61	Developing pervasive multi-agent systems with nature-inspired coordination. Pervasive and Mobile Computing, 2015, 17, 236-252.	2.1	75
62	Space–time programming. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140220.	1.6	18
63	A coordination model of pervasive service ecosystems. Science of Computer Programming, 2015, 110, 3-22.	1.5	13
64	Formal foundations of sensor network applications. SIGSPATIAL Special, 2015, 7, 36-42.	2.5	1
65	Aggregate Programming for the Internet of Things. Computer, 2015, 48, 22-30.	1.2	138
66	Efficient Engineering of Complex Self-Organising Systems by Self-Stabilising Fields. , 2015, , .		33
67	A framework supporting multi-compartment stochastic simulation and parameter optimisation for investigating biological system development. Simulation, 2015, 91, 666-685.	1.1	5
68	Protelis. , 2015, , .		76
69	Code Mobility Meets Self-organisation: A Higher-Order Calculus of Computational Fields. Lecture Notes in Computer Science, 2015, , 113-128.	1.0	27
70	Multi-agent Systems Meet Aggregate Programming: Towards a Notion of Aggregate Plan. Lecture Notes in Computer Science, 2015, , 49-64.	1.0	3
71	Programming Mirror Worlds: An Agent-Oriented Programming Perspective. Lecture Notes in Computer Science, 2015, , 191-211.	1.0	9
72	Building Blocks for Aggregate Programming of Self-Organising Applications. , 2014, , .		38

5

#	Article	IF	CITATIONS
73	Predictable Self-Organization with Computational Fields. , 2014, , .		Ο
74	HPC from a self-organisation perspective: The case of crowd steering at the urban scale. , 2014, , .		8
75	A Calculus of Self-stabilising Computational Fields. Lecture Notes in Computer Science, 2014, , 163-178.	1.0	29
76	Injecting Self-Organisation into Pervasive Service Ecosystems. Mobile Networks and Applications, 2013, 18, 398-412.	2.2	28
77	Description and composition of bio-inspired design patterns: a complete overview. Natural Computing, 2013, 12, 43-67.	1.8	135
78	Operational semantics of proto. Science of Computer Programming, 2013, 78, 633-656.	1.5	10
79	Semantic tuple centres. Science of Computer Programming, 2013, 78, 569-582.	1.5	5
80	On competitive self-composition in pervasive services. Science of Computer Programming, 2013, 78, 556-568.	1.5	9
81	Simulation in Agent-Oriented Software Engineering: The SODA case study. Science of Computer Programming, 2013, 78, 705-714.	1.5	11
82	Combining self-organisation, context-awareness and semantic reasoning. , 2013, , .		12
83	Chemical-oriented simulation of computational systems with ALCHEMIST. Journal of Simulation, 2013, 7, 202-215.	1.0	91
84	Engineering Pervasive Multiagent Systems in SAPERE. Lecture Notes in Computer Science, 2013, , 196-214.	1.0	1
85	Pervasive ecosystems. , 2012, , .		24
86	A model for drosophila melanogaster development from a single cell to stripe pattern formation. , 2012, , .		5
87	Dynamic composition of coordination abstractions for pervasive systems. , 2012, , .		0
88	Gradient-Based Self-Organisation Patterns of Anticipative Adaptation. , 2012, , .		8
89	Towards Situated Awareness in Urban Networks: A Bio-Inspired Approach. , 2012, , .		3
90	Toward Approximate Stochastic Model Checking of Computational Fields for Pervasive Computing Systems. , 2012, , .		3

#	Article	IF	CITATIONS
91	Self-Organising Semantic Resource Discovery for Pervasive Systems. , 2012, , .		5
92	Linda in Space-Time: An Adaptive Coordination Model for Mobile Ad-Hoc Environments. Lecture Notes in Computer Science, 2012, , 212-229.	1.0	24
93	A Computational Framework for Multilevel Morphologies. Understanding Complex Systems, 2012, , 383-405.	0.3	1
94	Standard Type Soundness for Agents and Artifacts. Scientific Annals of Computer Science, 2012, , 267-326.	0.4	2
95	A Coordination Approach to Adaptive Pervasive Service Ecosystems. , 2011, , .		5
96	Description and composition of bio-inspired design patterns. , 2011, , .		10
97	Coordinating e-health systems with TuCSoN semantic tuple centres. ACM SIGAPP Applied Computing Review: A Publication of the Special Interest Group on Applied Computing, 2011, 11, 43-53.	0.5	8
98	Self-aware Pervasive Service Ecosystems. Procedia Computer Science, 2011, 7, 197-199.	1.2	52
99	Environment programming in multi-agent systems: an artifact-based perspective. Autonomous Agents and Multi-Agent Systems, 2011, 23, 158-192.	1.3	143
100	simpA: An agent-oriented approach for programming concurrent applications on top of Java. Science of Computer Programming, 2011, 76, 37-62.	1.5	18
101	Programming coordination laws of artifacts in CArtAgO. , 2011, , .		1
102	Core operational semantics of Proto. , 2011, , .		10
103	Description spaces with fuzziness. , 2011, , .		6
104	Coordination models and languages: from parallel computing to self-organisation. Knowledge Engineering Review, 2011, 26, 53-59.	2.1	52
105	A survey on natureâ€inspired metaphors for pervasive service ecosystems. International Journal of Pervasive Computing and Communications, 2011, 7, 186-204.	1.1	50
106	A quarter-century of <i>The Knowledge Engineering Review</i> : Introduction to the Special Issue. Knowledge Engineering Review, 2011, 26, 1-3.	2.1	1
107	Towards a Coordination Approach to Adaptive Pervasive Service Ecosystems. , 2011, , .		4
108	Spatial Coordination of Pervasive Services through Chemical-Inspired Tuple Spaces. ACM Transactions on Autonomous and Adaptive Systems, 2011, 6, 1-24.	0.4	57

#	Article	lF	CITATIONS
109	A Calculus of Agents and Artifacts. Communications in Computer and Information Science, 2011, , 124-136.	0.4	4
110	Self-organising Pervasive Ecosystems: A Crowd Evacuation Example. Lecture Notes in Computer Science, 2011, , 115-129.	1.0	4
111	Middleware Infrastructures for Self-organising Pervasive Computing Systems. Natural Computing Series, 2011, , 313-344.	2.2	0
112	A Framework for Modelling and Simulating Networks of Cells. Electronic Notes in Theoretical Computer Science, 2010, 268, 115-129.	0.9	6
113	A biochemical approach to adaptive service ecosystems. Information Sciences, 2010, 180, 1876-1892.	4.0	36
114	Chemical-inspired self-composition of competing services. , 2010, , .		11
115	Coordination in open and dynamic environments with TuCSoN semantic tuple centres. , 2010, , .		14
116	Self Organization in Coordination Systems Using a WordNet-Based Ontology. , 2010, , .		4
117	Spatial Coordination of Pervasive Systems through Chemical-Inspired Tuple Spaces. , 2010, , .		2
118	Externalisation and Internalization: A New Perspective on Agent Modularisation in Multi-Agent System Programming. Lecture Notes in Computer Science, 2010, , 35-54.	1.0	5
119	Towards a Pervasive Infrastructure for Chemical-Inspired Self-organising Services. Lecture Notes in Computer Science, 2010, , 152-176.	1.0	5
120	Formalising the Environment in MAS Programming: A Formal Model for Artifact-Based Environments. Lecture Notes in Computer Science, 2010, , 133-150.	1.0	1
121	Environment in agent-oriented software engineering methodologies. Multiagent and Grid Systems, 2009, 5, 37-57.	0.5	10
122	An experience on probabilistic model checking and stochastic simulation to design self-organizing systems. , 2009, , .		2
123	A computational framework for modelling multicellular biochemistry. , 2009, , .		3
124	A framework for modelling and implementing self-organising coordination. , 2009, , .		29
125	A biochemical metaphor for developing eternally adaptive service ecosystems. , 2009, , .		1
126	Using probabilistic model checking and simulation for designing self-organizing systems. , 2009, , .		2

#	Article	IF	CITATIONS
127	On the collective sort problem for distributed tuple spaces. Science of Computer Programming, 2009, 74, 702-722.	1.5	14
128	Biochemical Tuple Spaces for Self-organising Coordination. Lecture Notes in Computer Science, 2009, , 143-162.	1.0	47
129	General-Purpose Coordination Abstractions for Managing Interaction in MAS. , 2009, , .		2
130	Environment Programming in CArtAgO. , 2009, , 259-288.		83
131	Agents, Intelligence and Tools. Lecture Notes in Computer Science, 2009, , 157-173.	1.0	1
132	Prototyping A&A ReSpecT in Maude. Electronic Notes in Theoretical Computer Science, 2008, 194, 93-109.	0.9	4
133	Prototyping Concurrent Systems with Agents and Artifacts: Framework and Core Calculus. Electronic Notes in Theoretical Computer Science, 2008, 194, 111-132.	0.9	8
134	On the reification of Java wildcards. Science of Computer Programming, 2008, 73, 59-75.	1.5	1
135	Artifacts in the A&A meta-model for multi-agent systems. Autonomous Agents and Multi-Agent Systems, 2008, 17, 432-456.	1.3	255
136	Applying Self-Organizing Coordination to Emergent Tuple Organization in Distributed Networks. , 2008, , .		5
137	Nature-Inspired Spatial Metaphors for Pervasive Service Ecosystems. , 2008, , .		6
138	Collective Sort and Emergent Patterns of Tuple Distribution in Grid-Like Networks. , 2008, , .		0
139	Integrating Java and Prolog through generic methods and type inference. , 2008, , .		2
140	Lightweight family polymorphism. Journal of Functional Programming, 2008, 18, 285-331.	0.5	24
141	Designing self-organising environments with agents and artefacts: a simulation-driven approach. International Journal of Agent Oriented Software Engineering, 2008, 2, 171.	0.1	26
142	Architecture and Metaphors for Eternally Adaptive Service Ecosystems. Studies in Computational Intelligence, 2008, , 23-32.	0.7	10
143	simpA: A Simple Agent-Oriented Java Extension for Developing Concurrent Applications. Lecture Notes in Computer Science, 2008, , 261-278.	1.0	6
144	Guest Editorial Journal of Object Technology, 2008, 7, .	0.8	0

#	Article	IF	CITATIONS
145	Reifying wildcards in Java using the EGO approach. , 2007, , .		2
146	simpA. , 2007, , .		6
147	A self-organising solution to the collective sort problem in distributed tuple spaces. , 2007, , .		2
148	A Prolog-oriented extension of Java programming based on generics and annotations. , 2007, , .		2
149	Give agents their artifacts. , 2007, , .		38
150	On the Problem of Over-clustering in Tuple-based Coordination Systems. , 2007, , .		4
151	Self-organized over-clustering avoidance in tuple-space systems. , 2007, , .		3
152	Variant path types for scalable extensibility. ACM SIGPLAN Notices, 2007, 42, 113-132.	0.2	1
153	INFRASTRUCTURE FOR RBAC-MAS: AN APPROACH BASED ON AGENT COORDINATION CONTEXTS. Applied Artificial Intelligence, 2007, 21, 443-467.	2.0	10
154	Engineering a BPEL orchestration engine as a multi-agent system. Science of Computer Programming, 2007, 66, 226-245.	1.5	17
155	A core calculus for correlation in orchestration languages. The Journal of Logic and Algebraic Programming, 2007, 70, 74-95.	1.4	13
156	ReSpecT Nets: Towards an Analysis Methodology for ReSpecT Specifications. Electronic Notes in Theoretical Computer Science, 2007, 180, 123-144.	0.9	1
157	Simulating Emergent Properties of Coordination in Maude: the Collective Sort Case. Electronic Notes in Theoretical Computer Science, 2007, 175, 59-80.	0.9	14
158	A Self-organizing Approach to Tuple Distribution in Large-Scale Tuple-Space Systems. Lecture Notes in Computer Science, 2007, , 146-160.	1.0	12
159	Using Ant's Brood Sorting to Increase Fault Tolerance in Linda's Tuple Distribution Mechanism. Lecture Notes in Computer Science, 2007, , 255-269.	1.0	2
160	Design Patterns for Self-organising Systems. Lecture Notes in Computer Science, 2007, , 123-132.	1.0	26
161	The A&A Programming Model and Technology for Developing Agent Environments in MAS. , 2007, , 89-106.		23

162 Variant path types for scalable extensibility. , 2007, , .

#	Article	IF	CITATIONS
163	Guest Editorial Journal of Object Technology, 2007, 6, .	0.8	Ο
164	AGENT COORDINATION CONTEXTS IN A MAS COORDINATION INFRASTRUCTURE. Applied Artificial Intelligence, 2006, 20, 179-202.	2.0	8
165	Agens Faber: Toward a Theory of Artefacts for MAS. Electronic Notes in Theoretical Computer Science, 2006, 150, 21-36.	0.9	36
166	Agent Coordination Contexts for the formal specification and enactment of coordination and security policies. Science of Computer Programming, 2006, 63, 88-107.	1.5	7
167	Infrastructures for the environment of multiagent systems. Autonomous Agents and Multi-Agent Systems, 2006, 14, 49-60.	1.3	42
168	A Framework for Engineering Interactions in Java-based Component Systems. Electronic Notes in Theoretical Computer Science, 2006, 154, 43-61.	0.9	2
169	Designing a BPEL Orchestration Engine Based on ReSpecT Tuple Centres. Electronic Notes in Theoretical Computer Science, 2006, 154, 139-158.	0.9	8
170	Variant parametric types. ACM Transactions on Programming Languages and Systems, 2006, 28, 795-847.	1.7	52
171	Operating instructions for intelligent agent coordination. Knowledge Engineering Review, 2006, 21, 49-69.	2.1	18
172	On the Role of Simulations in Engineering Self-organising MAS: The Case of an Intrusion Detection System in TuCSoN. Lecture Notes in Computer Science, 2006, , 153-166.	1.0	19
173	Coordination Artifacts as First-Class Abstractions for MAS Engineering: State of the Research. Lecture Notes in Computer Science, 2006, , 71-90.	1.0	30
174	The Multidisciplinary Patterns of Interaction from Sciences to Computer Science. , 2006, , 395-414.		13
175	CArtA gO: A Framework for Prototyping Artifact-Based Environments in MAS. , 2006, , 67-86.		81
176	Cognitive Stigmergy: Towards a Framework Based on Agents and Artifacts. , 2006, , 124-140.		52
177	Process-algebraic approaches for multi-agent systems: an overview. Applicable Algebra in Engineering, Communications and Computing, 2005, 16, 69-75.	0.3	3
178	An algebraic approach for modelling organisation, roles and contexts in MAS. Applicable Algebra in Engineering, Communications and Computing, 2005, 16, 151-178.	0.3	16
179	RBAC for Organisation and Security in an Agent Coordination Infrastructure. Electronic Notes in Theoretical Computer Science, 2005, 128, 65-85.	0.9	30
180	Effective and Efficient Compilation of Run-Time Generics in Java. Electronic Notes in Theoretical Computer Science, 2005, 138, 95-116.	0.9	4

IF # ARTICLE CITATIONS Time-Aware Coordination in ReSpecT. Lecture Notes in Computer Science, 2005, , 268-282. Understanding access restriction of variant parametric types and Java wildcards., 2005, ... 182 1 A timed extension of ReSpecT., 2005, , . Environments in multiagent systems. Knowledge Engineering Review, 2005, 20, 127-141. 184 2.1 45 Lightweight Family Polymorphism. Lecture Notes in Computer Science, 2005, , 161-177. 1.0 14 Agent Interaction Semantics by Timed Operating Instructions. Lecture Notes in Computer Science, 2005, 186 1.0 2 , 173-192. Environment-Based Coordination Through Coordination Artifacts. Lecture Notes in Computer 1.0 Science, 2005, , 190-214. On Access Restriction with Java Wildcards.. Journal of Object Technology, 2005, 4, 117. 0.8 188 5 An Organisation Infrastructure for Multi-agent Systems Based on Agent Coordination Contexts. 1.0 Lecture Notes in Computer Science, 2005, , 198-211. MULTI-AGENT INFRASTRUCTURES FOR OBJECTIVE AND SUBJECTIVE COORDINATION. Applied Artificial 190 2.0 8 Intelligence, 2004, 18, 815-831. Verifying Properties of Coordination by Well-Structured Transition Systems. Electronic Notes in Theoretical Computer Science, 2004, 97, 67-96. On the Semantics of Coordination Models for Distributed Systems: The LogOp Case Study. Electronic 192 0.9 9 Notes in Theoretical Computer Science, 2004, 97, 97-124. Towards a Formal Foundation to Orchestration Languages. Electronic Notes in Theoretical Computer 34 Science, 2004, 105, 51-71. Operational Semantics for Agents by Iterated Refinement. Lecture Notes in Computer Science, 2004, , 194 1.0 2 37-53. Guest Editorial.. Journal of Object Technology, 2004, 3, . Formal Specification and Enactment of Security Policies through Agent Coordination Contexts. 196 0.9 14 Electronic Notes in Theoretical Computer Science, 2003, 85, 17-36. Coordination as a Service: Ontological and Formal Foundation. Electronic Notes in Theoretical 26 Computer Science, 2003, 68, 457-482. A Type-Passing Approach for the Implementation of Parametric Methods in Java. Computer Journal, 198 1.5 7 2003, 46, 263-294.

MIRKO VIROLI

#	Article	IF	CITATIONS
199	Comparing semantic frameworks for coordination. , 2003, , .		1
200	An Observation Approach to the Semantics of Agent Communication Languages. Applied Artificial Intelligence, 2002, 16, 775-793.	2.0	1
201	Specifying agent observable behaviour. , 2002, , .		9
202	Parametric polymorphism in Java. ACM SIGPLAN Notices, 2000, 35, 146-165.	0.2	10
203	Simulating Large-scale Aggregate MASs with Alchemist and Scala. , 0, , .		20
204	Type-based Self-stabilisation for Computational Fields. Logical Methods in Computer Science, 0, Volume 11, Issue 4, .	0.4	15
205	From SOA to Pervasive Service Ecosystems. Advances in Web Technologies and Engineering Book Series, 0, , 207-237.	0.4	3
206	Organizing the Aggregate. , 0, , 436-501.		61
207	Resiliency with Aggregate Computing: State of the Art and Roadmap. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 217, 5-18.	0.8	1
208	Aggregate Graph Statistics. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 264, 18-22.	0.8	2
209	On Distributed Runtime Verification by Aggregate Computing. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 302, 47-61.	0.8	1
210	Time-Fluid Field-Based Coordination through Programmable Distributed Schedulers. Logical Methods in Computer Science, 0, Volume 17, Issue 4, .	0.4	12