Mariana F Wolfner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8474770/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolution of genes and genomes on the Drosophila phylogeny. Nature, 2007, 450, 203-218.	27.8	1,886
2	Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature, 1995, 373, 241-244.	27.8	1,276
3	Insect Seminal Fluid Proteins: Identification and Function. Annual Review of Entomology, 2011, 56, 21-40.	11.8	734
4	Tokens of love: Functions and regulation of drosophila male accessory gland products. Insect Biochemistry and Molecular Biology, 1997, 27, 179-192.	2.7	505
5	The sex peptide of Drosophila melanogaster: Female post-mating responses analyzed by using RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9923-9928.	7.1	453
6	Reproduction–Immunity Trade-Offs in Insects. Annual Review of Entomology, 2016, 61, 239-256.	11.8	407
7	Evolution in the Fast Lane: Rapidly Evolving Sex-Related Genes in Drosophila. Genetics, 2007, 177, 1321-1335.	2.9	330
8	Seminal Fluid Protein Allocation and Male Reproductive Success. Current Biology, 2009, 19, 751-757.	3.9	309
9	Seminal influences: Drosophila Acps and the molecular interplay between males and females during reproduction. Integrative and Comparative Biology, 2007, 47, 427-445.	2.0	308
10	Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly. Science, 2022, 375, eabk2432.	12.6	295
11	Genes Regulated by Mating, Sperm, or Seminal Proteins in Mated Female Drosophila melanogaster. Current Biology, 2004, 14, 1509-1514.	3.9	287
12	Mated Drosophila melanogaster Females Require a Seminal Fluid Protein, Acp36DE, to Store Sperm Efficiently. Genetics, 1999, 153, 845-857.	2.9	261
13	The Drosophila seminal fluid protein Acp26Aa stimulates release of oocytes by the ovary. Current Biology, 2000, 10, 99-102.	3.9	259
14	Transitioning from egg to embryo: Triggers and mechanisms of egg activation. Developmental Dynamics, 2008, 237, 527-544.	1.8	174
15	Identity and transfer of male reproductive gland proteins of the dengue vector mosquito, Aedes aegypti: Potential tools for control of female feeding and reproduction. Insect Biochemistry and Molecular Biology, 2008, 38, 176-189.	2.7	170
16	The developments between gametogenesis and fertilization: ovulation and female sperm storage in drosophila melanogaster. Developmental Biology, 2003, 256, 195-211.	2.0	167
17	The <i>Drosophila melanogaster</i> Seminal Fluid Protein Acp62F Is a Protease Inhibitor That Is Toxic Upon Ectopic Expression. Genetics, 2002, 160, 211-224.	2.9	156
18	Sustained Post-Mating Response in Drosophila melanogaster Requires Multiple Seminal Fluid Proteins. PLoS Genetics, 2007, 3, e238.	3.5	154

#	Article	IF	CITATIONS
19	Protein-specific manipulation of ejaculate composition in response to female mating status in <i>Drosophila melanogaster</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9922-9926.	7.1	152
20	A network of interactions among seminal proteins underlies the long-term postmating response in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15384-15389.	7.1	150
21	Synthesis of two Drosophila male accessory gland proteins and their fate after transfer to the female during mating. Developmental Biology, 1990, 142, 465-475.	2.0	145
22	Battle and Ballet: Molecular Interactions between the Sexes in Drosophila. Journal of Heredity, 2009, 100, 399-410.	2.4	141
23	Offsetting Effects of Wolbachia Infection and Heat Shock on Sperm Production in <i>Drosophila simulans</i> : Analyses of Fecundity, Fertility and Accessory Gland Proteins. Genetics, 2000, 155, 167-178.	2.9	141
24	Post-mating Gene Expression Profiles of Female <i>Drosophila melanogaster</i> in Response to Time and to Four Male Accessory Gland Proteins. Genetics, 2008, 179, 1395-1408.	2.9	137
25	Evolutionary Rate Covariation Identifies New Members of a Protein Network Required for Drosophila melanogaster Female Post-Mating Responses. PLoS Genetics, 2014, 10, e1004108.	3.5	137
26	3 Wise, Winsome, or Weird? Mechanisms of Sperm Storage in Female Animals. Current Topics in Developmental Biology, 1998, 41, 67-97.	2.2	129
27	Male Seminal Fluid Proteins Are Essential for Sperm Storage in Drosophila melanogaster. Genetics, 1999, 153, 837-844.	2.9	129
28	Integrated 3D view of postmating responses by the <i>Drosophila melanogaster</i> female reproductive tract, obtained by micro-computed tomography scanning. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8475-8480.	7.1	125
29	Sex Peptide Is Required for the Efficient Release of Stored Sperm in Mated Drosophila Females. Genetics, 2010, 186, 595-600.	2.9	124
30	Localization of the Drosophila male accessory gland protein Acp36DE in the mated female suggests a role in sperm storage. Insect Biochemistry and Molecular Biology, 1996, 26, 971-980.	2.7	123
31	Sexual Conflict and Seminal Fluid Proteins: A Dynamic Landscape of Sexual Interactions. Cold Spring Harbor Perspectives in Biology, 2015, 7, a017533.	5.5	123
32	Comparative structural modeling and inference of conserved protein classes in Drosophila seminal fluid. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13542-13547.	7.1	118
33	The Drosophila melanogaster Seminal Fluid Protease "Seminase―Regulates Proteolytic and Post-Mating Reproductive Processes. PLoS Genetics, 2012, 8, e1002435.	3.5	118
34	Ovulation Triggers Activation of Drosophila Oocytes. Developmental Biology, 2001, 234, 416-424.	2.0	117
35	<i>Drosophila</i> seminal protein ovulin mediates ovulation through female octopamine neuronal signaling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17420-17425.	7.1	117
36	Drosophila seminal fluid proteins enter the circulatory system of the mated female fly by crossing the posterior vaginal wall. Insect Biochemistry and Molecular Biology, 1999, 29, 1043-1052.	2.7	116

#	Article	IF	CITATIONS
37	New Genes for Male Accessory Gland Proteins in Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 1997, 27, 825-834.	2.7	115
38	Ejaculate–female and sperm–female interactions. , 2009, , 247-304.		115
39	Identification and function of proteolysis regulators in seminal fluid. Molecular Reproduction and Development, 2013, 80, 80-101.	2.0	115
40	Towards a Semen Proteome of the Dengue Vector Mosquito: Protein Identification and Potential Functions. PLoS Neglected Tropical Diseases, 2011, 5, e989.	3.0	110
41	Acp36DE is required for uterine conformational changes in mated Drosophila females. Proceedings of the United States of America, 2009, 106, 15796-15800.	7.1	109
42	Seminal proteins but not sperm induce morphological changes in the Drosophila melanogaster female reproductive tract during sperm storage. Journal of Insect Physiology, 2007, 53, 319-331.	2.0	107
43	An Ectopic Expression Screen Reveals the Protective and Toxic Effects of Drosophila Seminal Fluid Proteins. Genetics, 2007, 175, 777-783.	2.9	102
44	Male and Female Cooperate in the Prohormone-like Processing of a Drosophila melanogaster Seminal Fluid Protein. Developmental Biology, 1995, 171, 694-702.	2.0	96
45	An early role for the Drosophila melanogaster male seminal protein Acp36DE in female sperm storage. Journal of Experimental Biology, 2003, 206, 3521-3528.	1.7	96
46	Mating, seminal fluid components, and sperm cause changes in vesicle release in the Drosophila female reproductive tract. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6261-6266.	7.1	89
47	A Role for Acp29AB, a Predicted Seminal Fluid Lectin, in Female Sperm Storage in <i>Drosophila melanogaster</i> . Genetics, 2008, 180, 921-931.	2.9	88
48	Mechanical stimulation by osmotic and hydrostatic pressure activates Drosophila oocytes in vitro in a calcium-dependent manner. Developmental Biology, 2008, 316, 100-109.	2.0	87
49	Two cleavage products of the Drosophila accessory gland protein ovulin can independently induce ovulation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 743-748.	7.1	86
50	Mating-Induced Transcriptome Changes in the Reproductive Tract of Female Aedes aegypti. PLoS Neglected Tropical Diseases, 2016, 10, e0004451.	3.0	85
51	Wispy, the Drosophila Homolog of GLD-2, Is Required During Oogenesis and Egg Activation. Genetics, 2008, 178, 2017-2029.	2.9	84
52	Cell type-specific gene expression in the Drosophila melanogaster male accessory gland. Mechanisms of Development, 1992, 38, 33-40.	1.7	83
53	Calcium waves occur as <i>Drosophila</i> oocytes activate. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 791-796.	7.1	82
54	Candidate genetic modifiers of retinitis pigmentosa identified by exploiting natural variation in <i>Drosophila</i> . Human Molecular Genetics, 2016, 25, 651-659.	2.9	81

#	Article	IF	CITATIONS
55	Predicted seminal astacin-like protease is required for processing of reproductive proteins in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18674-18679.	7.1	80
56	Sequences expressed sex-specifically in Drosophila melanogaster adults. Developmental Biology, 1987, 119, 242-251.	2.0	77
57	The <i>Drosophila</i> seminal proteome and its role in postcopulatory sexual selection. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20200072.	4.0	76
58	The Drosophila maternal-effect gene fs(1)Ya encodes a cell cycle-dependent nuclear envelope component required for embryonic mitosis. Cell, 1991, 64, 49-62.	28.9	75
59	On a matter of seminal importance. BioEssays, 2015, 37, 142-147.	2.5	74
60	Molecular Social Interactions. Advances in Genetics, 2009, 68, 23-56.	1.8	71
61	A Novel Function for the Hox Gene Abd-B in the Male Accessory Gland Regulates the Long-Term Female Post-Mating Response in Drosophila. PLoS Genetics, 2013, 9, e1003395.	3.5	70
62	Precious Essences: Female Secretions Promote Sperm Storage in Drosophila. PLoS Biology, 2011, 9, e1001191.	5.6	70
63	Chemical Cues that Guide Female Reproduction in Drosophila melanogaster. Journal of Chemical Ecology, 2018, 44, 750-769.	1.8	69
64	Structure, cell-specific expression, and mating-induced regulation of a Drosophila melanogaster male accessory gland gene. Developmental Biology, 1990, 139, 134-148.	2.0	68
65	Determination of male-specific gene expression in Drosophila accessory glands. Developmental Biology, 1988, 126, 195-202.	2.0	67
66	Targeted Gene Deletion and Phenotypic Analysis of the <i>Drosophila melanogaster</i> Seminal Fluid Protease Inhibitor Acp62F. Genetics, 2008, 178, 1605-1614.	2.9	66
67	Seminal fluid protein depletion and replenishment in the fruit fly, Drosophila melanogaster: an ELISA-based method for tracking individual ejaculates. Behavioral Ecology and Sociobiology, 2009, 63, 1505-1513.	1.4	66
68	Mating Regulates Neuromodulator Ensembles at Nerve Termini Innervating the Drosophila Reproductive Tract. Current Biology, 2014, 24, 731-737.	3.9	66
69	Post-mating change in excretion by mated Drosophila melanogaster females is a long-term response that depends on sex peptide and sperm. Journal of Insect Physiology, 2013, 59, 1024-1030.	2.0	64
70	The Drosophila Calcipressin Sarah Is Required for Several Aspects of Egg Activation. Current Biology, 2006, 16, 1441-1446.	3.9	63
71	Identification and Characterization of Seminal Fluid Proteins in the Asian Tiger Mosquito, Aedes albopictus. PLoS Neglected Tropical Diseases, 2014, 8, e2946.	3.0	63
72	Longevity Genes Revealed by Integrative Analysis of Isoform-Specific <i>daf-16/FoxO</i> Mutants of <i>Caenorhabditis elegans</i> . Genetics, 2015, 201, 613-629.	2.9	63

#	Article	IF	CITATIONS
73	Molecular Changes During Egg Activation. Current Topics in Developmental Biology, 2013, 102, 267-292.	2.2	62
74	The Female Post-Mating Response Requires Genes Expressed in the Secondary Cells of the Male Accessory Gland in <i>Drosophila melanogaster</i> . Genetics, 2016, 202, 1029-1041.	2.9	61
75	The Genetic Basis for Male × Female Interactions Underlying Variation in Reproductive Phenotypes of Drosophila. Genetics, 2010, 186, 1355-1365.	2.9	60
76	A requirement for the neuromodulators octopamine and tyramine in <i>Drosophila melanogaster</i> female sperm storage. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4562-4567.	7.1	60
77	Cytoplasmic polyadenylation is a major mRNA regulator during oogenesis and egg activation in Drosophila. Developmental Biology, 2013, 383, 121-131.	2.0	59
78	Evidence for Positive Selection on Drosophila melanogaster Seminal Fluid Protease Homologs. Molecular Biology and Evolution, 2008, 25, 497-506.	8.9	54
79	Duration and dose-dependency of female sexual receptivity responses to seminal fluid proteins in Aedes albopictus and Ae. aegypti mosquitoes. Journal of Insect Physiology, 2012, 58, 1307-1313.	2.0	53
80	The IncRNA male-specific abdominal plays a critical role in Drosophila accessory gland development and male fertility. PLoS Genetics, 2018, 14, e1007519.	3.5	53
81	Long-term interaction between Drosophila sperm and sex peptide is mediated by other seminal proteins that bind only transiently to sperm. Insect Biochemistry and Molecular Biology, 2018, 102, 43-51.	2.7	52
82	Behavior-related gene regulatory networks: A new level of organization in the brain. Proceedings of the United States of America, 2020, 117, 23270-23279.	7.1	52
83	Postâ€ejaculatory modifications to sperm (PEMS). Biological Reviews, 2020, 95, 365-392.	10.4	50
84	Male contributions during mating increase female survival in the disease vector mosquito Aedes aegypti. Journal of Insect Physiology, 2018, 108, 1-9.	2.0	49
85	Calcium and egg activation in Drosophila. Cell Calcium, 2013, 53, 10-15.	2.4	47
86	Sperm success and immunity. Current Topics in Developmental Biology, 2019, 135, 287-313.	2.2	47
87	Proteins, Transcripts, and Genetic Architecture of Seminal Fluid and Sperm in the Mosquito Aedes aegypti. Molecular and Cellular Proteomics, 2019, 18, S6-S22.	3.8	46
88	Protein phosphorylation changes reveal new candidates in the regulation of egg activation and early embryogenesis in D. melanogaster. Developmental Biology, 2012, 370, 125-134.	2.0	44
89	<i>Drosophila melanogaster</i> sex peptide regulates mated female midgut morphology and physiology. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118,	7.1	44
90	Sex peptide receptor is required for the release of stored sperm by mated Drosophila melanogaster females. Journal of Insect Physiology, 2015, 76, 1-6.	2.0	43

#	Article	IF	CITATIONS
91	Retention of Ejaculate by <i>Drosophila melanogaster</i> Females Requires the Male-Derived Mating Plug Protein PEBme. Genetics, 2015, 200, 1171-1179.	2.9	43
92	Neprilysins: An Evolutionarily Conserved Family of Metalloproteases That Play Important Roles in Reproduction in <i>Drosophila</i> . Genetics, 2014, 196, 781-797.	2.9	41
93	Heritable Variation in Courtship Patterns in <i>Drosophila melanogaster</i> . G3: Genes, Genomes, Genetics, 2015, 5, 531-539.	1.8	41
94	Large Neurological Component to Genetic Differences Underlying Biased Sperm Use in <i>Drosophila</i> . Genetics, 2013, 193, 177-185.	2.9	40
95	Molecular Characterization and Evolution of a Gene Family Encoding Both Female- and Male-Specific Reproductive Proteins in Drosophila. Molecular Biology and Evolution, 2014, 31, 1554-1567.	8.9	39
96	Male reproductive aging arises via multifaceted mating-dependent sperm and seminal proteome declines, but is postponable in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17094-17103.	7.1	39
97	The <i>goddard</i> and <i>saturn</i> genes are essential for <i>Drosophila</i> male fertility and may have arisen <i>de novo</i> . Molecular Biology and Evolution, 2017, 34, msx057.	8.9	39
98	Induction of Excessive Endoplasmic Reticulum Stress in the Drosophila Male Accessory Gland Results in Infertility. PLoS ONE, 2015, 10, e0119386.	2.5	38
99	A <i>Drosophila</i> Protease Cascade Member, Seminal Metalloprotease-1, Is Activated Stepwise by Male Factors and Requires Female Factors for Full Activity. Genetics, 2014, 196, 1117-1129.	2.9	36
100	Evolution of Reproductive Behavior. Genetics, 2020, 214, 49-73.	2.9	35
101	Roles of Female and Male Genotype in Post-Mating Responses in Drosophila melanogaster. Journal of Heredity, 2017, 108, 740-753.	2.4	34
102	Co-opting evo-devo concepts for new insights into mechanisms of behavioural diversity. Journal of Experimental Biology, 2019, 222, .	1.7	33
103	The Genetic Architecture of the Genome-Wide Transcriptional Response to ER Stress in the Mouse. PLoS Genetics, 2015, 11, e1004924.	3.5	32
104	Localized heat-shock induction inDrosophila melanogaster. The Journal of Experimental Zoology, 1988, 247, 279-284.	1.4	31
105	Cleavage of the Drosophila seminal protein Acp36DE in mated females enhances its sperm storage activity. Journal of Insect Physiology, 2017, 101, 66-72.	2.0	31
106	The impact of ageing on male reproductive success in Drosophila melanogaster. Experimental Gerontology, 2018, 103, 1-10.	2.8	31
107	Functional genome annotation of <i>Drosophila</i> seminal fluid proteins using transcriptional genetic networks. Genetical Research, 2011, 93, 387-395.	0.9	29
108	Synthesis, depletion and cell-type expression of a protein from the male accessory glands of the dengue vector mosquito Aedes aegypti. Journal of Insect Physiology, 2014, 70, 117-124.	2.0	29

#	Article	IF	CITATIONS
109	The <i>Drosophila</i> Trpm channel mediates calcium influx during egg activation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18994-19000.	7.1	29
110	She's got nerve: roles of octopamine in insect female reproduction. Journal of Neurogenetics, 2021, 35, 132-153.	1.4	26
111	Modulation of MAPK Activities During Egg Activation in Drosophila. Fly, 2007, 1, 222-227.	1.7	24
112	The life history of <i>Drosophila</i> sperm involves molecular continuity between male and female reproductive tracts. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119899119.	7.1	24
113	Identification of a micropeptide and multiple secondary cell genes that modulate <i>Drosophila</i> male reproductive success. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	23
114	Don't pull the plug! the <i>Drosophila</i> mating plug preserves fertility. Fly, 2015, 9, 62-67.	1.7	22
115	Male accessory gland molecules inhibit harmonic convergence in the mosquito Aedes aegypti. Current Biology, 2019, 29, R196-R197.	3.9	22
116	Female Genetic Contributions to Sperm Competition in <i>Drosophila melanogaster</i> . Genetics, 2019, 212, 789-800.	2.9	22
117	Evidence for structural constraint on ovulin, a rapidly evolving Drosophila melanogaster seminal protein. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18644-18649.	7.1	21
118	Mating and blood-feeding induce transcriptome changes in the spermathecae of the yellow fever mosquito Aedes aegypti. Scientific Reports, 2020, 10, 14899.	3.3	21
119	Drosophila seminal sex peptide associates with rival as well as own sperm, providing SP function in polyandrous females. ELife, 2020, 9, .	6.0	21
120	Calcineurin-dependent Protein Phosphorylation Changes During Egg Activation in Drosophila melanogaster. Molecular and Cellular Proteomics, 2019, 18, S145-S158.	3.8	20
121	Differences in Postmating Transcriptional Responses between Conspecific and Heterospecific Matings in <i>Drosophila</i> . Molecular Biology and Evolution, 2021, 38, 986-999.	8.9	19
122	Nuclear Entry of theDrosophila melanogasterNuclear Lamina Protein YA Correlates with Developmentally Regulated Changes in Its Phosphorylation State. Developmental Biology, 1999, 210, 124-134.	2.0	18
123	A calciumâ€mediated actin redistribution at egg activation in <i>Drosophila</i> . Molecular Reproduction and Development, 2020, 87, 293-304.	2.0	17
124	The impact of mating and sugar feeding on blood-feeding physiology and behavior in the arbovirus vector mosquito Aedes aegypti. PLoS Neglected Tropical Diseases, 2021, 15, e0009815.	3.0	17
125	Versatile CRISPR/Cas9-mediated mosaic analysis by gRNA-induced crossing-over for unmodified genomes. PLoS Biology, 2021, 19, e3001061.	5.6	15
126	It Takes Two to Tango: Including a Female Perspective in Reproductive Biology. Integrative and Comparative Biology, 2020, 60, 796-813.	2.0	14

#	Article	IF	CITATIONS
127	Interactions between the microbiome and mating influence the female's transcriptional profile in Drosophila melanogaster. Scientific Reports, 2020, 10, 18168.	3.3	14
128	Zinc Dynamics during Drosophila Oocyte Maturation and Egg Activation. IScience, 2020, 23, 101275.	4.1	13
129	Sex Determination: Sex on the Brain?. Current Biology, 2003, 13, R101-R103.	3.9	12
130	YA is needed for proper nuclear organization to transition between meiosis and mitosis in Drosophila. BMC Developmental Biology, 2009, 9, 43.	2.1	12
131	Temporally Variable Selection on Proteolysis-Related Reproductive Tract Proteins in Drosophila. Molecular Biology and Evolution, 2012, 29, 229-238.	8.9	12
132	Phospho-Regulation Pathways During Egg Activation in <i>Drosophila melanogaster</i> . Genetics, 2013, 195, 171-180.	2.9	12
133	Who's Zooming Who? Seminal Fluids and Cryptic Female Choice in Diptera. , 2015, , 351-384.		12
134	Insect Male Reproductive Glands and Their Products. , 2018, , 137-144.		12
135	Dynamic changes in ejaculatory bulb size during Drosophila melanogaster aging and mating. Journal of Insect Physiology, 2018, 107, 152-156.	2.0	11
136	Maternal Proteins That Are Phosphoregulated upon Egg Activation Include Crucial Factors for Oogenesis, Egg Activation and Embryogenesis in <i>Drosophila melanogaster</i> . G3: Genes, Genomes, Genetics, 2018, 8, 3005-3018.	1.8	11
137	Dissecting Fertility Functions of <i>Drosophil</i> a <i>Y</i> Chromosome Genes with CRISPR. Genetics, 2020, 214, 977-990.	2.9	11
138	Upgraded CRISPR/Cas9 tools for tissue-specific mutagenesis in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	11
139	A standardized nomenclature and atlas of the female terminalia of <i>Drosophila melanogaster</i> . Fly, 2022, 16, 128-151.	1.7	11
140	Local fitness and epistatic effects lead to distinct patterns of linkage disequilibrium in protein-coding genes. Genetics, 2022, 221, .	2.9	8
141	Alfred Sturtevant Walks into a Bar: Gene Dosage, Gene Position, and Unequal Crossing Over in Drosophila. Genetics, 2016, 204, 833-835.	2.9	7
142	Nature and Functions of Glands and Ducts in the Drosophila Reproductive Tract. , 2016, , 411-444.		7
143	Seminal fluid proteins induce transcriptome changes in the Aedes aegypti female lower reproductive tract. BMC Genomics, 2021, 22, 896.	2.8	7
144	A single mating is sufficient to induce persistent reduction of immune defense in mated female Drosophila melanogaster. Journal of Insect Physiology, 2022, 140, 104414.	2.0	7

#	Article	IF	CITATIONS
145	Reproductive behaviour: Make love, then war. Nature Ecology and Evolution, 2017, 1, 174.	7.8	6
146	Cilia take the egg on a magic carpet ride. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	6
147	Seminal Plasma Plays Important Roles in Fertility. , 2017, , 88-108.		5
148	Regulation of Trpm activation and calcium wave initiation during <i>Drosophila</i> egg activation. Molecular Reproduction and Development, 2020, 87, 880-886.	2.0	5
149	Plc21C is involved in calcium wave propagation during egg activation. MicroPublication Biology, 2020, 2020, .	0.1	5
150	Octopaminergic/tyraminergic <i>Tdc2</i> neurons regulate biased sperm usage in female <i>Drosophila melanogaster</i> . Genetics, 2022, 221, .	2.9	4
151	The <i>Drosophila prage</i> Gene, Required for Maternal Transcript Destabilization in Embryos, Encodes a Predicted RNA Exonuclease. G3: Genes, Genomes, Genetics, 2016, 6, 1687-1693.	1.8	3
152	The Effects of Male Seminal Fluid Proteins on Gut/Gonad Interactions in Drosophila. Insects, 2022, 13, 623.	2.2	3
153	Intimate intimas: Positioning of copulatory organs in mating <i>Drosophila</i> . Molecular Reproduction and Development, 2017, 84, 1117-1117.	2.0	2
154	Lindsley and Sandler et al. on Gene Dosage and the Drosophila Genome. Genetics, 2016, 202, 1247-1249.	2.9	1
155	Drosophila mating, inside and out. Molecular Reproduction and Development, 2016, 83, 653-653.	2.0	1
156	Spermatozoa in the Peak District. Molecular Reproduction and Development, 2016, 83, 8-11.	2.0	1
157	"Call and Response― A Case of Behavioralâ€Molecular Copulatory Dialogue?. BioEssays, 2020, 42, 2000248.	2.5	1
158	Mating-regulates reproductive-tract neuromodulators in Drosophila. Molecular Reproduction and Development, 2014, 81, 567-567.	2.0	0
159	A calcium rise occurs as activating Drosophila eggs move through the female reproductive tract. Molecular Reproduction and Development, 2015, 82, 501-501.	2.0	Ο
160	Neuronal nitric oxide synthase in the lower reproductive tract of female Drosophila. Molecular Reproduction and Development, 2015, 82, 265-265.	2.0	0
161	Meroistic oogenesis of Drosophila, in section in situ. Molecular Reproduction and Development, 2018, 85, 287-287.	2.0	0
162	X-ray fluorescence microscopy scanning of Drosophila oocytes and eggs. STAR Protocols, 2021, 2, 100247.	1.2	0

#	Article	IF	CITATIONS
163	Identification and bioinformatic analysis of neprilysin and neprilysin-like metalloendopeptidases in. MicroPublication Biology, 2021, 2021, .	0.1	0