Jingyun Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8474708/publications.pdf

Version: 2024-02-01

304743 214800 2,229 62 22 47 h-index citations g-index papers 62 62 62 3785 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tailoring the lateral size of two-dimensional silicon nanomaterials to produce highly stable and efficient deep-blue emissive silicene-like quantum dots. Journal of Materials Chemistry C, 2021, 9, 10065-10072.	5.5	7
2	UV electroluminescence emissions from high-quality ZnO/ZnMgO multiple quantum well active layer light-emitting diodes. RSC Advances, 2021, 11 , 38949 - 38955 .	3.6	7
3	Silicene Quantum Dots Confined in Few-Layer Siloxene Nanosheets for Blue-Light-Emitting Diodes. ACS Applied Nano Materials, 2020, 3, 538-546.	5. O	16
4	One-step controllable synthesis of amino-modification siloxene for enhanced solar water-splitting. Journal of Colloid and Interface Science, 2020, 579, 205-211.	9.4	7
5	Highly Stable Lithiumâ-'Sulfur Batteries Promised by Siloxene: An Effective Cathode Material to Regulate the Adsorption and Conversion of Polysulfides. Advanced Functional Materials, 2020, 30, 1910331.	14.9	41
6	Fabricating ultrathin ZrB2/Graphene oxide/carboxymethocel layer onto cathode as effective polysulfide shuttling barrier for Li–S battery. Electrochimica Acta, 2019, 321, 134694.	5.2	6
7	A nanostructured ferroelectric lithium tantalate as polysulfide immobilizer and promoter for improved lithium-sulfur batteries. Journal of Alloys and Compounds, 2019, 807, 151672.	5.5	13
8	Fabricating efficient polysulfide barrier via ultrathin tantalum pentoxide grown on separator for lithium–sulfur batteries. Journal of Electroanalytical Chemistry, 2019, 854, 113539.	3.8	3
9	High internal quantum efficiency ZnO/ZnMgO multiple quantum wells prepared on GaN/sapphire templates for ultraviolet light emitting diodes. Journal of Materials Chemistry C, 2019, 7, 6534-6538.	5 . 5	13
10	Hierarchical Highâ€Porosity Graphene Oxideâ€Porous Carbon/Sulfur Composite with Sodium Chloride as Temporary Space Holders for Highâ€Performance Lithiumâ€Sulfur Batteries. ChemElectroChem, 2019, 6, 2667-2674.	3.4	3
11	A Method of Combining the Increased Density of Acceptors with Restrained Density of Oxygen Vacancies to Fabricate p-Type Single-Crystalline ZnO Films. Journal of Electronic Materials, 2019, 48, 780-786.	2.2	3
12	Three-dimensional graphene foam integrated with Ni(OH)2 nanosheets as a hierarchical structure for non-enzymatic glucose sensing. Journal of Electroanalytical Chemistry, 2019, 832, 275-283.	3.8	23
13	Bio-inspired three-dimensional micro-nanoporous graphene for constructing Schottky junction and remarkably enhanced electrochemical detection. Sensors and Actuators B: Chemical, 2019, 281, 245-252.	7.8	2
14	Three-Dimensional Porous Nickel Frameworks Anchored with Cross-Linked Ni(OH) ₂ Nanosheets as a Highly Sensitive Nonenzymatic Glucose Sensor. ACS Applied Materials & Samp; Interfaces, 2018, 10, 15088-15095.	8.0	60
15	Enhanced photocatalytic properties of ZnO nanorods by electrostatic self-assembly with reduced graphene oxide. Physical Chemistry Chemical Physics, 2018, 20, 6959-6969.	2.8	53
16	A nanostructured p-NiO/n-Bi4Ti3O12 heterojunction for direct GOx electrochemistry and high-sensitivity glucose sensing. Sensors and Actuators B: Chemical, 2018, 261, 385-391.	7.8	22
17	P-type single-crystalline ZnO films obtained by (Na,N) dual implantation through dynamic annealing process. Journal of Crystal Growth, 2018, 483, 236-240.	1.5	10
18	A label-free electrochemical platform for the highly sensitive detection of hepatitis B virus DNA using graphene quantum dots. RSC Advances, 2018, 8, 1820-1825.	3.6	94

#	Article	IF	Citations
19	Powder metallurgy template growth of 3D N-doped graphene foam as binder-free cathode for high-performance lithium/sulfur battery. Carbon, 2018, 137, 368-378.	10.3	50
20	P-type single-crystalline ZnO films obtained by (Li, N) dual implantation through dynamic annealing process. Journal of Materials Science: Materials in Electronics, 2017, 28, 16215-16219.	2.2	4
21	Self-assembly vertically cross-linked 3D Bi3Ti2O8F nanosheets for colorimetric and electrochemical mimic peroxidase sensor. Journal of Electroanalytical Chemistry, 2017, 807, 76-81.	3.8	4
22	Triggering interface potential barrier: A controllable tuning mechanism for electrochemical detection. Biosensors and Bioelectronics, 2016, 85, 869-875.	10.1	22
23	P-type single-crystalline ZnO films obtained by (N,O) dual implantation through dynamic annealing process. Superlattices and Microstructures, 2016, 100, 468-473.	3.1	4
24	Facile fabrication of all-solid-state SnO2/NiCo2O4 biosensor for self-powered glucose detection. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	11
25	Highly sensitive electrochemical detection of circulating tumor DNA based on thin-layer MoS ₂ /graphene composites. RSC Advances, 2016, 6, 22673-22678.	3.6	76
26	Impact of exciton dissociation on the metal-enhanced photoluminescence in ZnO/ZnMgO multiple quantum wells. Applied Physics A: Materials Science and Processing, 2015, 121, 1039-1044.	2.3	0
27	Synthesis of ZnO–CuO porous core–shell spheres and their application for non-enzymatic glucose sensor. Applied Physics A: Materials Science and Processing, 2015, 118, 989-996.	2.3	37
28	Determination of Na acceptor level in Na+ ion-implanted ZnO single crystal. Applied Physics A: Materials Science and Processing, 2015, 118, 1229-1232.	2.3	6
29	Supercontinuum pulse measurement by \$\$hbox {KNbO}_{3}\$\$ KNbO 3 nanoneedle based cross-correlation frequency-resolved optical gating (XFROG). Optical and Quantum Electronics, 2015, 47, 1083-1089.	3.3	0
30	Enhanced internal quantum efficiency in non-polar ZnO/Zn_081Mg_0190 multiple quantum wells by Pt surface plasmons coupling. Optics Letters, 2015, 40, 3639.	3.3	10
31	Self-fluorinated Bi ₃ Ti ₂ O ₈ F formed by cross-linked nanosheets as a superior dye-sensitized photocatalyst. RSC Advances, 2015, 5, 81087-81092.	3.6	4
32	Bioinspired Formation of 3D Hierarchical CoFe ₂ O ₄ Porous Microspheres for Magnetic-Controlled Drug Release. ACS Applied Materials & Samp; Interfaces, 2015, 7, 1327-1333.	8.0	66
33	Use of tunable secondâ€harmonic signal from KNbO ₃ nanoneedles to find optimal wavelength for deepâ€tissue imaging. Laser and Photonics Reviews, 2014, 8, 865-874.	8.7	13
34	Synthesis of ZnO micro-pompons by soft template-directed wet chemical method and their application in electrochemical biosensors. Electrochimica Acta, 2014, 115, 277-282.	5.2	17
35	A perovskite-type KNbO3 nanoneedles based biosensor for direct electrochemistry of hydrogen peroxide. Ceramics International, 2014, 40, 8111-8116.	4.8	26
36	Bio-inspired Formation of Mesoporous LiNbO3 Nanotubes and Application for Glucose Biosensor. Electrochimica Acta, 2014, 147, 176-182.	5.2	6

#	Article	IF	Citations
37	Electrostatic Self-Assembly of BiVO ₄ â€"Reduced Graphene Oxide Nanocomposites for Highly Efficient Visible Light Photocatalytic Activities. ACS Applied Materials & Deficient Visible Light Photocatalytic Activities. ACS Applied Materials & Deficient Visible Light Photocatalytic Activities. ACS Applied Materials & Deficient Visible Light Photocatalytic Activities. ACS Applied Materials & Deficient Visible Light Photocatalytic Activities. ACS Applied Materials & Deficient Visible Light Photocatalytic Activities. ACS Applied Materials & Deficient Visible Light Photocatalytic Activities. ACS Applied Materials & Deficient Visible Light Photocatalytic Activities. ACS Applied Materials & Deficient Visible Light Photocatalytic Activities. ACS Applied Materials & Deficient Visible Light Photocatalytic Activities. ACS Applied Materials & Deficient Visible Light Photocatalytic Activities. ACS Applied Materials & Deficient Visible Light Photocatalytic Activities. ACS Applied Materials & Deficient Visible Light Photocatalytic Activities. ACS Applied Materials & Deficient Visible Light Photocatalytic Activities. ACS Applied Materials & Deficient Visible Light Photocatalytic Activities. ACS Applied Materials & Deficient Visible Light Photocatalytic Activities. ACS Applied Materials & Deficient Visible Light Photocatalytic Activities. ACS Applied Materials & Deficient Visible Light Photocatalytic Ph	8.0	146
38	3D graphene network@WO ₃ nanowire composites: a multifunctional colorimetric and electrochemical biosensing platform. Chemical Communications, 2014, 50, 11135-11138.	4.1	85
39	3D graphene foams decorated by CuO nanoflowers for ultrasensitive ascorbic acid detection. Biosensors and Bioelectronics, 2014, 59, 384-388.	10.1	162
40	Self-assemble ZnMn2O4 hierarchical hollow microspheres into self-supporting architecture for enhanced biosensing performance. Biosensors and Bioelectronics, 2014, 61, 443-447.	10.1	18
41	Growth of high-quality ZnO thin films on ($$11$ ar ${2}$ 0 $$)$ a-plane sapphire substrates by plasma-assisted molecular beam epitaxy. Applied Physics A: Materials Science and Processing, 2013, 112, 1051-1055.	2.3	9
42	Electrically pumped ultraviolet lasing from ZnO in metal-insulator-semi devices. Applied Physics A: Materials Science and Processing, 2013, 111, 689-694.	2.3	2
43	Mango core inner shell membrane template-directed synthesis of porous ZnO films and their application for enzymatic glucose biosensor. Applied Surface Science, 2013, 285, 344-349.	6.1	18
44	Realization of p-type Se–N co-doped ZnO films by radio-frequency magnetron sputtering. Materials Letters, 2013, 108, 183-185.	2.6	10
45	The application of porous ZnO 3D framework to assemble enzyme for rapid and ultrahigh sensitive biosensors. Ceramics International, 2013, 39, 9319-9323.	4.8	13
46	Controlled synthesis of spinel ZnFe2O4 decorated ZnO heterostructures as peroxidase mimetics for enhanced colorimetric biosensing. Chemical Communications, 2013, 49, 7656.	4.1	70
47	Preparation and optical properties of ZnO/Zn0.9Mg0.10 multiple quantum well structures with various well widths grown on c-plane sapphire. Optics Communications, 2013, 301-302, 96-99.	2.1	9
48	A single mesoporous ZnO/Chitosan hybrid nanostructure for a novel free nanoprobe type biosensor. Biosensors and Bioelectronics, 2013, 43, 226-230.	10.1	45
49	Synthesis of mesoporous multiwall ZnO nanotubes by replicating silk and application for enzymatic biosensor. Biosensors and Bioelectronics, 2013, 49, 318-322.	10.1	58
50	Piezoelectric properties of rhombic LiNbO3 nanowires. RSC Advances, 2012, 2, 7380.	3.6	45
51	Growth of potassium niobate micro-hexagonal tablets with monoclinic phase and its excellent piezoelectric property. Journal of Crystal Growth, 2012, 354, 9-12.	1.5	1
52	Optical properties and structural characteristics of ZnO thin films grown on a-plane sapphire substrates by plasma-assisted molecular beam epitaxy. Optics Communications, 2012, 285, 4431-4434.	2.1	11
53	Effects of diffusion temperature and diffusion time on fabrication of Na-diffused p-type ZnO thin films. Materials Letters, 2012, 80, 175-177.	2.6	6
54	Enhanced near band edge emission of ZnO via surface plasmon resonance of aluminum nanoparticles. Journal of Applied Physics, 2011, 110, 023510.	2.5	45

#	Article	IF	CITATIONS
55	Optical properties of p-type CuAlO2 thin film grown by rf magnetron sputtering. Applied Surface Science, 2011, 257, 8330-8333.	6.1	50
56	Synthesis and waveguiding of single-crystalline LiNbO3 nanorods. Applied Physics Letters, 2011, 98, 093102.	3. 3	20
57	Multifunctional ZnO interfaces with hierarchical micro- andÂnanostructures: bio-inspiration from the compound eyes ofÂbutterflies. Applied Physics A: Materials Science and Processing, 2010, 100, 57-61.	2.3	4
58	The influence of morphologies and doping of nanostructured ZnO on the field emission behaviors. Solid-State Electronics, 2009, 53, 578-583.	1.4	31
59	Growth and properties of ZnO nanorod and nanonails by thermal evaporation. Applied Surface Science, 2009, 255, 3972-3976.	6.1	36
60	Fabrication of ZnO/Al2O3 core–shell nanostructures and crystalline Al2O3 nanotube. Applied Surface Science, 2008, 254, 5917-5920.	6.1	16
61	Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes. Nanotechnology, 2008, 19, 025602.	2.6	105
62	Controlled Replication of Butterfly Wings for Achieving Tunable Photonic Properties. Nano Letters, 2006, 6, 2325-2331.	9.1	475