
Marina V Fedotova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8474667/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Hydration and Ion Binding of the Osmolyte Ectoine. Journal of Physical Chemistry B, 2015, 119, 15203-15211.	2.6	64
2	Hydration of acetic acid and acetate ion in water studied by 1D-RISM theory. Journal of Molecular Liquids, 2011, 164, 201-206.	4.9	52
3	Mobility and association of ions in aqueous solutions: the case of imidazolium based ionic liquids. Physical Chemistry Chemical Physics, 2016, 18, 28594-28605.	2.8	47
4	Ion-binding of glycine zwitterion with inorganic ions in biologically relevant aqueous electrolyte solutions. Biophysical Chemistry, 2014, 190-191, 25-31.	2.8	38
5	Compatible osmolytes - bioprotectants: Is there a common link between their hydration and their protective action under abiotic stresses?. Journal of Molecular Liquids, 2019, 292, 111339.	4.9	32
6	Integral Equation Theory of Molecular Solvation Coupled with Quantum Mechanical/Molecular Mechanics Method in NWChem Package. Journal of Chemical Theory and Computation, 2012, 8, 1246-1254.	5.3	31
7	1D-RISM study of glycine zwitterion hydration and ion-molecular complex formation in aqueous NaCl solutions. Journal of Molecular Liquids, 2012, 169, 1-7.	4.9	28
8	Hydration structure of osmolyte TMAO: concentration/pressure-induced response. New Journal of Chemistry, 2017, 41, 1219-1228.	2.8	28
9	Effect of temperature and pressure on structural self-organization of aqueous sodium chloride solutions. Journal of Molecular Liquids, 2010, 153, 9-14.	4.9	26
10	Hydration and ion-binding of glycine betaine: How they may be involved into protection of proteins under abiotic stresses. Journal of Molecular Liquids, 2017, 244, 489-498.	4.9	26
11	Proline hydration at low temperatures: its role in the protection of cell from freeze-induced stress. Amino Acids, 2016, 48, 1685-1694.	2.7	25
12	Ion-selective interactions of biologically relevant inorganic ions with alanine zwitterion: a 3D-RISM study. Amino Acids, 2015, 47, 1015-1023.	2.7	24
13	Hydration and ion association of aqueous choline chloride and chlorocholine chloride. Physical Chemistry Chemical Physics, 2019, 21, 10970-10980.	2.8	24
14	Hydration of para-aminobenzoic acid (PABA) and its anion—The view from statistical mechanics. Journal of Molecular Liquids, 2013, 186, 90-97.	4.9	23
15	Evidence for cooperative Na ⁺ and Cl ^{â^'} binding by strongly hydrated <scp>l</scp> -proline. Physical Chemistry Chemical Physics, 2017, 19, 20474-20483.	2.8	23
16	Structural features of concentrated aqueous NaCl solution in the sub- and supercritical state at different densities. Journal of Molecular Liquids, 2008, 143, 35-41.	4.9	20
17	The hydration of aniline and benzoic acid: Analysis of radial and spatial distribution functions. Journal of Molecular Liquids, 2013, 179, 27-33.	4.9	20
18	Features of local ordering of biocompatible ionic liquids: The case of choline-based amino acid ionic liquids. Journal of Molecular Liquids, 2019, 296, 112081.	4.9	20

Marina V Fedotova

#	Article	IF	CITATIONS
19	Local ion hydration structure in aqueous imidazolium-based ionic liquids: The effects of concentration and anion nature. Journal of Molecular Liquids, 2017, 247, 100-108.	4.9	19
20	Hydration features of the neurotransmitter acetylcholine. Journal of Molecular Liquids, 2020, 304, 112757.	4.9	17
21	Characterization of selective binding of biologically relevant inorganic ions with the proline zwitterion by 3D-RISM theory. New Journal of Chemistry, 2015, 39, 8594-8601.	2.8	16
22	Specific and nonspecific effects of biologically active inorganic salts on inclusion complex formation of cyclodextrins with aromatic carboxylic acids. Chemical Engineering Science, 2015, 122, 97-103.	3.8	14
23	Hydration and dynamics of <scp>l</scp> -glutamate ion in aqueous solution. Physical Chemistry Chemical Physics, 2021, 23, 1590-1600.	2.8	14
24	Chemical bond effects in classical site density functional theory of inhomogeneous molecular liquids. Journal of Chemical Physics, 2020, 152, 041101.	3.0	10
25	Ion Pairing of the Neurotransmitters Acetylcholine and Glutamate in Aqueous Solutions. Journal of Physical Chemistry B, 2021, 125, 11219-11231.	2.6	9
26	Molecular insight on ion hydration and association in aqueous choline chloride solutions. Journal of Molecular Liquids, 2020, 313, 113563.	4.9	8
27	Renormalized site density functional theory. Journal of Statistical Mechanics: Theory and Experiment, 2021, 2021, 033205.	2.3	7
28	Renormalized site density functional theory for models of ion hydration. Journal of Chemical Physics, 2021, 155, 064501.	3.0	6
29	CDFTPY: A python package for performing classical density functional theory calculations for molecular liquids. Computer Physics Communications, 2022, 276, 108338.	7.5	6
30	Site Density Functional Theory and Structural Bioinformatics Analysis of the SARS-CoV Spike Protein and hACE2 Complex. Molecules, 2022, 27, 799.	3.8	5
31	Temperature and density effects on structural features of a dilute aqueous lithium chloride solution at near- and supercritical conditions. Journal of Molecular Liquids, 2011, 164, 39-43.	4.9	4
32	Hydration and counterion binding of aqueous acetylcholine chloride and carbamoylcholine chloride. Physical Chemistry Chemical Physics, 2021, 23, 25086-25096.	2.8	2
33	Electron–electron attraction caused by dispersion forces in metal–ammonia solutions. Chemical Physics Letters, 2013, 556, 138-141.	2.6	1