Amir Aharoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8474653/publications.pdf

Version: 2024-02-01

66 papers

4,351 citations

236925 25 h-index 110387 64 g-index

74 all docs

74 docs citations

74 times ranked 5914 citing authors

#	Article	IF	CITATIONS
1	Transcription-replication coordination revealed in single live cells. Nucleic Acids Research, 2022, 50, 2143-2156.	14.5	12
2	Cac1 WHD and PIP domains have distinct roles in replisome progression and genomic stability. Current Genetics, 2021, 67, 129-139.	1.7	7
3	Human SIRT1 Multispecificity Is Modulated by Active-Site Vicinity Substitutions during Natural Evolution. Molecular Biology and Evolution, 2021, 38, 545-556.	8.9	5
4	Editorial overview: Engineering, evolving, andÂdesigning proteins. Current Opinion in Structural Biology, 2021, 69, iii-v.	5.7	1
5	A KLK4 proteinase substrate capture approach to antagonize PAR1. Scientific Reports, 2021, 11, 16170.	3.3	O
6	A Bacterial Quorum Sensing Molecule Elicits a General Stress Response in Saccharomyces cerevisiae. Frontiers in Microbiology, 2021, 12, 632658.	3.5	2
7	Application of directed evolution and back-to-consensus algorithms to human alpha1-antitrypsin leads to diminished anti-protease activity and augmented anti-inflammatory activities. Cellular Immunology, 2020, 355, 104135.	3.0	2
8	Directed evolution of SIRT6 for improved deacylation and glucose homeostasis maintenance. Scientific Reports, 2018, 8, 3538.	3.3	11
9	Marker-free genetic manipulations in yeast using CRISPR/CAS9 system. Current Genetics, 2018, 64, 1129-1139.	1.7	21
10	Proteasome accessory factor A (PafA) transferase activity makes sense in the light of its homology with glutamine synthetase. Journal of Molecular Biology, 2018, 430, 668-681.	4.2	8
11	The evolution of a G1/S transcriptional network in yeasts. Current Genetics, 2018, 64, 81-86.	1.7	12
12	Pif1 is essential for efficient replisome progression through lagging strand G-quadruplex DNA secondary structures. Nucleic Acids Research, 2018, 46, 11847-11857.	14.5	75
13	A Live-Cell Imaging Approach for Measuring DNA Replication Rates. Cell Reports, 2018, 24, 252-258.	6.4	28
14	Point Mutation of a Non-Elastase-Binding Site in Human $\hat{l}\pm 1$ -Antitrypsin Alters Its Anti-Inflammatory Properties. Frontiers in Immunology, 2018, 9, 759.	4.8	11
15	Enhanced PKMT-substrate recognition through non active-site interactions. Biochemical and Biophysical Research Communications, 2018, 501, 1029-1033.	2.1	6
16	A bi-specific inhibitor targeting IL-17A and MMP-9 reduces invasion and motility in MDA-MB-231 cells. Oncotarget, 2018, 9, 28500-28513.	1.8	4
17	CNN Based Yeast Cell Segmentation in Multi-modal Fluorescent Microscopy Data. , 2017, , .		16
18	Increased Potency of a Bi-specific TL1A-ADAM17 (TACE) Inhibitor by Cell Surface Targeting. Frontiers in Molecular Biosciences, 2017, 4, 61.	3.5	8

#	Article	IF	Citations
19	Directed evolution of a soluble human DR3 receptor for the inhibition of TL1A induced cytokine secretion. PLoS ONE, 2017, 12, e0173460.	2.5	7
20	Gene duplication and co-evolution of $G1/S$ transcription factor specificity in fungi are essential for optimizing cell fitness. PLoS Genetics, 2017, 13, e1006778.	3.5	11
21	Engineering of Methylation State Specific 3xMBT Domain Using ELISA Screening. PLoS ONE, 2016, 11, e0154207.	2.5	3
22	Evolved to overcome Bt-toxin resistance. Nature, 2016, 533, 39-40.	27.8	2
23	Automated Structure- and Sequence-Based Design of Proteins for High Bacterial Expression and Stability. Molecular Cell, 2016, 63, 337-346.	9.7	363
24	Harnessing the Oxidation Susceptibility of Deubiquitinases for Inhibition with Small Molecules. Angewandte Chemie - International Edition, 2015, 54, 599-603.	13.8	27
25	Conditionâ€specific genetic interaction maps reveal crosstalk between the <scp>cAMP</scp> / <scp>PKA</scp> and the <scp>HOG MAPK</scp> pathways in the activation of the general stress response. Molecular Systems Biology, 2015, 11, 829.	7.2	46
26	A continuous kinetic assay for protein and DNA methyltransferase enzymatic activities. Epigenetics and Chromatin, 2015, 8, 56.	3.9	21
27	The functional importance of co-evolving residues in proteins. Cellular and Molecular Life Sciences, 2014, 71, 673-682.	5.4	12
28	Sequential switching of binding partners on PCNA during in vitro Okazaki fragment maturation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14118-14123.	7.1	45
29	Experimental analysis of co-evolution within protein complexes: The yeast exosome as a model. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1997-2006.	2.6	10
30	Directed Evolution of a Soluble Human IL-17A Receptor for the Inhibition of Psoriasis Plaque Formation in a Mouse Model. Chemistry and Biology, 2013, 20, 202-211.	6.0	17
31	Computational protein design suggests that human PCNAâ€partner interactions are not optimized for affinity. Proteins: Structure, Function and Bioinformatics, 2013, 81, 341-348.	2.6	9
32	Protein co-evolution: how do we combine bioinformatics and experimental approaches?. Molecular BioSystems, 2013, 9, 175-181.	2.9	16
33	Employing directed evolution for the functional analysis of multi-specific proteins. Bioorganic and Medicinal Chemistry, 2013, 21, 3511-3516.	3.0	7
34	Dissecting the Roles of the N―and Câ€Flanking Residues of Acetyllysine Substrates for SIRT1 Activity. ChemBioChem, 2013, 14, 577-581.	2.6	7
35	Conserved Motifs in the Msn2-Activating Domain are Important for Msn2-Mediated Yeast Stress Response. Journal of Cell Science, 2012, 125, 3333-42.	2.0	22
36	Tight coevolution of proliferating cell nuclear antigen (PCNA)-partner interaction networks in fungi leads to interspecies network incompatibility. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E406-14.	7.1	37

#	Article	IF	CITATIONS
37	Evolution in Microfluidic Droplet. Chemistry and Biology, 2012, 19, 929-931.	6.0	13
38	The Transition of Human Estrogen Sulfotransferase from Generalist to Specialist Using Directed Enzyme Evolution. Journal of Molecular Biology, 2012, 416, 21-32.	4.2	23
39	Targeting Deubiquitinases Enabled by Chemical Synthesis of Proteins. Journal of the American Chemical Society, 2012, 134, 3281-3289.	13.7	67
40	The Molecular Basis for the Broad Substrate Specificity of Human Sulfotransferase 1A1. PLoS ONE, 2011, 6, e26794.	2.5	54
41	Fine-tuning of the Msn2/4–mediated yeast stress responses as revealed by systematic deletion of Msn2/4 partners. Molecular Biology of the Cell, 2011, 22, 3127-3138.	2.1	7 5
42	Proliferating Cell Nuclear Antigen Is a Novel Inhibitory Ligand for the Natural Cytotoxicity Receptor NKp44. Journal of Immunology, 2011, 187, 5693-5702.	0.8	176
43	Novel Hybrid Esteraseâ€Haloacid Dehalogenase Enzyme. ChemBioChem, 2010, 11, 1975-1978.	2.6	16
44	Subtle Alterations in PCNA-Partner Interactions Severely Impair DNA Replication and Repair. PLoS Biology, 2010, 8, e1000507.	5 . 6	39
45	Coevolution Predicts Direct Interactions between mtDNA-Encoded and nDNA-Encoded Subunits of Oxidative Phosphorylation Complex I. Journal of Molecular Biology, 2010, 404, 158-171.	4.2	66
46	Interplay of metagenomics and <i>in vitro</i> compartmentalization. Microbial Biotechnology, 2009, 2, 31-39.	4.2	29
47	Mining for new enzymes. Microbial Biotechnology, 2009, 2, 128-129.	4.2	11
48	Covalent Inhibition of Bacterial Quorum Sensing. Journal of the American Chemical Society, 2009, 131, 10610-10619.	13.7	172
49	Surface Display of Redox Enzymes in Microbial Fuel Cells. Journal of the American Chemical Society, 2009, 131, 12052-12053.	13.7	100
50	Serum paraoxonase PON1 and its interactions with HDL. FASEB Journal, 2008, 22, 811.1.	0.5	1
51	Photoreduction of Bacteriorhodopsin Schiff Base at Low Humidity. A Study with C13=C14 Nonisomerizable Artificial Pigments¶. Photochemistry and Photobiology, 2007, 75, 668-674.	2.5	0
52	High-throughput Screens and Selections of Enzyme-encoding Genes. , 2006, , 163-181.		0
53	High-throughput screening methodology for the directed evolution of glycosyltransferases. Nature Methods, 2006, 3, 609-614.	19.0	211
54	High-throughput screens and selections of enzyme-encoding genes. Current Opinion in Chemical Biology, 2005, 9, 210-216.	6.1	187

#	Article	IF	CITATION
55	High-Throughput Screening of Enzyme Libraries: Thiolactonases Evolved by Fluorescence-Activated Sorting of Single Cells in Emulsion Compartments. Chemistry and Biology, 2005, 12, 1281-1289.	6.0	197
56	The 'evolvability' of promiscuous protein functions. Nature Genetics, 2005, 37, 73-76.	21.4	742
57	Directed evolution of proteins for heterologous expression and stability. Current Opinion in Structural Biology, 2005, 15, 50-56.	5 . 7	122
58	Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes. Nature Structural and Molecular Biology, 2004, 11, 412-419.	8.2	569
59	Directed evolution of mammalian paraoxonases PON1 and PON3 for bacterial expression and catalytic specialization. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 482-487.	7.1	275
60	Directed evolution of recombinant serum paraoxonase (PON) variants. Discovery Medicine, 2004, 4, 120-4.	0.5	5
61	Proteinâ^β-lonone Ring Interactions Enhance the Light-Induced Dipole of the Chromophore in Bacteriorhodopsin. Journal of Physical Chemistry B, 2003, 107, 6221-6225.	2.6	20
62	Light-Induced Hydrolysis and Rebinding of Nonisomerizable Bacteriorhodopsin Pigment. Biophysical Journal, 2002, 82, 2617-2626.	0.5	9
63	Photoreduction of Bacteriorhodopsin Schiff Base at Low Humidity. A Study with C13=C14 Nonisomerizable Artificial Pigments¶. Photochemistry and Photobiology, 2002, 75, 668.	2.5	6
64	Bacteriorhodpsin Experiences Light-induced Conformational Alterations in Nonisomerizable C13=C14Pigments. Journal of Biological Chemistry, 2000, 275, 21010-21016.	3.4	27
65	Fusion Peptides Derived from the HIV Type 1 Glycoprotein 41 Associate within Phospholipid Membranes and Inhibit Cell-Cell Fusion. Journal of Biological Chemistry, 1997, 272, 13496-13505.	3.4	152
66	Inter-ring Communication is Disrupted in the GroEL Mutant Arg13 → Gly; Ala126 → Val with Known Crystal Structure. Journal of Molecular Biology, 1996, 258, 732-735.	4.2	48