
Yan-fang Sang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/847450/publications.pdf Version: 2024-02-01

YAN-FANC SANC

#	Article	IF	CITATIONS
1	Drainage network extraction and morphometric analysis in an Iranian basin using integrating factor analysis and geospatial techniques. Geocarto International, 2022, 37, 896-925.	3.5	10
2	A framework for determining lowest navigable water levels with nonstationary characteristics. Stochastic Environmental Research and Risk Assessment, 2022, 36, 583-608.	4.0	0
3	Changes in compound hot and dry day and population exposure across China under climate change. International Journal of Climatology, 2022, 42, 2935-2949.	3.5	15
4	Assessment of spatiotemporal variability of precipitation using entropy indexes: a case study of Beijing, China. Stochastic Environmental Research and Risk Assessment, 2022, 36, 939-953.	4.0	10
5	Transformation towards resilient sponge cities in China. Nature Reviews Earth & Environment, 2022, 3, 99-101.	29.7	24
6	Editorial: Urban Flood Resilience and Sustainable Flood Management Strategies in Megacities. Frontiers in Water, 2022, 3, .	2.3	0
7	Evaluation of the landslide susceptibility and its spatial difference in the whole Qinghai-Tibetan Plateau region by five learning algorithms. Geoscience Letters, 2022, 9, .	3.3	16
8	æ°´æ−‡æ—¶é−´åºå^−åʿ¨æœŸå^†æžçš"RIC _p 准å^™. Chinese Science	e Bu bet in, 2	2020,,.
9	Understanding climate-induced changes of snow hydrological processes in the Kaidu River Basin through the CemaNeige-GR6J model. Catena, 2022, 212, 106082.	5.0	7
10	Detection of trend and seasonal changes in non-stationary remote sensing data: Case study of Tunisia vegetation dynamics. Ecological Informatics, 2022, 69, 101596.	5.2	8
11	A PHYSICOCHEMICAL ASSESSMENT OF UPPER CATCHMENT WITHIN THE AYER HITAM FOREST RESERVE, PENINSULAR MALAYSIA. Journal of Sustainability Science and Management, 2022, 17, 129-150.	0.5	1
12	Multidimensional architecture using a massive and heterogeneous data: Application to drought monitoring. Future Generation Computer Systems, 2022, 136, 1-14.	7.5	7
13	Effects of Rainfall and Underlying Surface on Flood Recession—The Upper Huaihe River Basin Case. International Journal of Disaster Risk Science, 2021, 12, 111-120.	2.9	12
14	Changes of compound hot and dry extremes on different land surface conditions in China during 1957–2018. International Journal of Climatology, 2021, 41, E1085.	3.5	21
15	Uniform discrete wavelet spectrum for detection of hydrologic variability at multiple timescales. Journal of Hydro-Environment Research, 2021, 35, 31-37.	2.2	4
16	Precipitation variability and its response to urbanization in the Taihu Lake Basin, China. Theoretical and Applied Climatology, 2021, 144, 1205-1218.	2.8	5
17	Correlation-aided method for identification and gradation of periodicities in hydrologic time series. Geoscience Letters, 2021, 8, .	3.3	1

18Temporal and spatial variations in the terrestrial water storage across Central Asia based on multiple
satellite datasets and global hydrological models. Journal of Hydrology, 2021, 596, 126013.5.442

#	Article	IF	CITATIONS
19	Exploring the Development of the Sponge City Program (SCP): The Case of Gui'an New District, Southwest China. Frontiers in Water, 2021, 3, .	2.3	12
20	Detection of type of trends in surface air temperature in China. Journal of Hydrology, 2021, 596, 126061.	5.4	5
21	Big data based architecture for drought forecasting using LSTM, ARIMA, and Prophet: Case study of the Jiangsu Province, China. , 2021, , .		6
22	Performance Evaluation of Long NDVI Timeseries from AVHRR, MODIS and Landsat Sensors over Landslide-Prone Locations in Qinghai-Tibetan Plateau. Remote Sensing, 2021, 13, 3172.	4.0	8
23	Effects of large upstream reservoir operations on cross-sectional changes in the channel of the lower Yellow River reach. Geomorphology, 2021, 387, 107768.	2.6	14
24	Increasing population exposure to global warm-season concurrent dry and hot extremes under different warming levels. Environmental Research Letters, 2021, 16, 094002.	5.2	34
25	Development of river morphologic stability index (RMSI) to assess mountain river systems. Journal of Hydrology: Regional Studies, 2021, 37, 100918.	2.4	2
26	Sponge City Program (SCP) and Urban Flood Management (UFM)—The Case of Guiyang, SW China. Water (Switzerland), 2021, 13, 2784.	2.7	10
27	Improving streamflow and flood simulations in three headwater catchments of the Tarim River based on a coupled glacier-hydrological model. Journal of Hydrology, 2021, 603, 127048.	5.4	17
28	Build in prevention and preparedness to improve climate resilience in coastal cities: Lessons from China's GBA. One Earth, 2021, 4, 1356-1360.	6.8	13
29	Random Forest-Based Reconstruction and Application of the GRACE Terrestrial Water Storage Estimates for the Lancang-Mekong River Basin. Remote Sensing, 2021, 13, 4831.	4.0	5
30	Does summer precipitation in China exhibit significant periodicities?. Journal of Hydrology, 2020, 581, 124289.	5.4	13
31	Evaluating satellite-based and reanalysis precipitation datasets with gauge-observed data and hydrological modeling in the Xihe River Basin, China. Atmospheric Research, 2020, 234, 104746.	4.1	57
32	Is there an underestimation of long-term variability of streamflow across the continental United States?. Journal of Hydrology, 2020, 581, 124365.	5.4	3
33	A review of drought monitoring with big data: Issues, methods, challenges and research directions. Ecological Informatics, 2020, 60, 101136.	5.2	52
34	Addressing Challenges of Urban Water Management in Chinese Sponge Cities via Nature-Based Solutions. Water (Switzerland), 2020, 12, 2788.	2.7	72
35	Challenges in urban stormwater management in Chinese cities: A hydrologic perspective. Journal of Hydrology, 2020, 591, 125314.	5.4	13
36	What Caused the Decline of Water Level of Yamzho Yumco During 1975–2012 in the Southern Tibetan Plateau?. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031121.	3.3	6

#	Article	IF	CITATIONS
37	Effects of the South Asian summer monsoon anomaly on interannual variations in precipitation over the South-Central Tibetan Plateau. Environmental Research Letters, 2020, 15, 124067.	5.2	24
38	Evolution of IOD-ENSO relationship at multiple time scales. Theoretical and Applied Climatology, 2019, 136, 1303-1309.	2.8	12
39	Response of Ecosystem Water Use Efficiency to Drought over China during 1982–2015: Spatiotemporal Variability and Resilience. Forests, 2019, 10, 598.	2.1	42
40	Comparison of different methods for detecting change points in hydroclimatic time series. Journal of Hydrology, 2019, 577, 123973.	5.4	16
41	Moving correlation coefficient-based method for jump points detection in hydroclimate time series. Stochastic Environmental Research and Risk Assessment, 2019, 33, 1751-1764.	4.0	4
42	Spatio-temporal patterns of drought evolution over the Beijing-Tianjin-Hebei region, China. Journal of Chinese Geography, 2019, 29, 863-876.	3.9	16
43	An improved nonstationary model for flood frequency analysis and its implication for the Three Gorges Dam, China. Hydrological Sciences Journal, 2019, 64, 845-855.	2.6	15
44	Wavelet Transform Application for/in Non-Stationary Time-Series Analysis: A Review. Applied Sciences (Switzerland), 2019, 9, 1345.	2.5	270
45	Increased adversely-affected population from water shortage below normal conditions in China with anthropogenic warming. Science Bulletin, 2019, 64, 567-569.	9.0	22
46	Attributing changes in future extreme droughts based on PDSI in China. Journal of Hydrology, 2019, 573, 607-615.	5.4	22
47	Complementaryâ€Relationshipâ€Based Modeling of Terrestrial Evapotranspiration Across China During 1982–2012: Validations and Spatiotemporal Analyses. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4326-4351.	3.3	175
48	Precipitation Complexity and its Spatial Difference in the Taihu Lake Basin, China. Entropy, 2019, 21, 48.	2.2	13
49	Multi-scale assessment of eco-hydrological resilience to drought in China over the last three decades. Science of the Total Environment, 2019, 672, 201-211.	8.0	46
50	Challenges of Hydrologic Nonstationarity: Mountain Torrent Control in China. Journal of Hydrologic Engineering - ASCE, 2019, 24, 02519001.	1.9	0
51	Using Geoâ€detector to attribute spatioâ€ŧemporal variation of pan evaporation across China in 1961–2001. International Journal of Climatology, 2019, 39, 2833-2840.	3.5	13
52	Streamflow change on the Qinghai-Tibet Plateau and its impacts. Chinese Science Bulletin, 2019, 64, 2807-2821.	0.7	57
53	Moving correlation coefficient-based method for the identification of periodicities in hydrologic time series. Chinese Science Bulletin, 2019, 64, 2549-2560.	0.7	1
54	Evaluation of the significance of abrupt changes in precipitation and runoff process in China. Journal of Hydrology, 2018, 560, 451-460.	5.4	24

#	Article	IF	CITATIONS
55	Entropy-Aided Evaluation of Meteorological Droughts Over China. Journal of Geophysical Research D: Atmospheres, 2018, 123, 740-749.	3.3	13
56	Projection of drought hazards in China during twenty-first century. Theoretical and Applied Climatology, 2018, 133, 331-341.	2.8	26
57	Spatial Heterogeneity in the Occurrence Probability of Rainstorms over China. Entropy, 2018, 20, 958.	2.2	0
58	Evaluation of three global gridded precipitation data sets in central Asia based on rain gauge observations. International Journal of Climatology, 2018, 38, 3475-3493.	3.5	101
59	Snow Hydrology in the Upper Yellow River Basin Under Climate Change: A Land Surface Modeling Perspective. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,676.	3.3	16
60	Evaluating remotely sensed monthly evapotranspiration against water balance estimates at basin scale in the Tibetan Plateau. Hydrology Research, 2018, 49, 1977-1990.	2.7	18
61	A discrete wavelet spectrum approach for identifying non-monotonic trends in hydroclimate data. Hydrology and Earth System Sciences, 2018, 22, 757-766.	4.9	26
62	Nonstationary statistical approach for designing LNWLs in inland waterways: a case study in the downstream of the Lancang River. Stochastic Environmental Research and Risk Assessment, 2018, 32, 3273-3286.	4.0	4
63	Investigating water budget dynamics in 18 river basins across the Tibetan Plateau through multiple datasets. Hydrology and Earth System Sciences, 2018, 22, 351-371.	4.9	43
64	Global drought and severe drought-affected populations in 1.5Âand 2 °C warmer worlds. Earth System Dynamics, 2018, 9, 267-283.	7.1	123
65	An experimental detrending approach to attributing change of pan evaporation in comparison with the traditional partial differential method. Journal of Hydrology, 2018, 564, 501-508.	5.4	5
66	Global Freshwater Availability Below Normal Conditions and Population Impact Under 1.5 and 2°C Stabilization Scenarios. Geophysical Research Letters, 2018, 45, 9803-9813.	4.0	29
67	Gradation of the significance level of trends in precipitation over China. Hydrology Research, 2018, 49, 1890-1901.	2.7	4
68	Pan evaporation paradox and evaporative demand from the past to the future over China: a review. Wiley Interdisciplinary Reviews: Water, 2017, 4, e1207.	6.5	38
69	Projecting and Attributing Future Changes of Evaporative Demand over China in CMIP5 Climate Models. Journal of Hydrometeorology, 2017, 18, 977-991.	1.9	18
70	Near real time de-noising of satellite-based soil moisture retrievals: An intercomparison among three different techniques. Remote Sensing of Environment, 2017, 198, 17-29.	11.0	9
71	Urban waterlogs control in China: more effective strategies and actions are needed. Natural Hazards, 2017, 85, 1291-1294.	3.4	56
72	Long-Term Streamflow Forecasting Based on Relevance Vector Machine Model. Water (Switzerland), 2017, 9, 9.	2.7	28

#	Article	IF	CITATIONS
73	Discussion on several major issues in the studies of hydrological nonstationarity. Chinese Science Bulletin, 2017, 62, 254-261.	0.7	3
74	Principle of correlation coefficient-based classification of hydrological trend and its verification. Chinese Science Bulletin, 2017, 62, 3089-3097.	0.7	4
75	Discussion on the Choice of Decomposition Level for Wavelet Based Hydrological Time Series Modeling. Water (Switzerland), 2016, 8, 197.	2.7	38
76	A worldwide evaluation of basin-scale evapotranspiration estimates against the water balance method. Journal of Hydrology, 2016, 538, 82-95.	5.4	171
77	Dependence of trends in and sensitivity of drought over China (1961–2013) on potential evaporation model. Geophysical Research Letters, 2016, 43, 206-213.	4.0	78
78	Improving snow process modeling with satelliteâ€based estimation of nearâ€surfaceâ€airâ€temperature lapse rate. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,005.	3.3	39
79	Assessing estimates of evaporative demand in climate models using observed pan evaporation over China. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8329-8349.	3.3	45
80	Precipitation variability and response to changing climatic condition in the Yarlung Tsangpo River basin, China. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8820-8831.	3.3	58
81	Wavelet-Based Hydrological Time Series Forecasting. Journal of Hydrologic Engineering - ASCE, 2016, 21, .	1.9	26
82	Large-scale circulation classification and its links to observed precipitation in the eastern and central Tibetan Plateau. Climate Dynamics, 2016, 46, 3481-3497.	3.8	64
83	Gradation of complexity and predictability of hydrological processes. Journal of Geophysical Research D: Atmospheres, 2015, 120, 5334-5343.	3.3	15
84	Exploring the water storage changes in the largest lake (<scp>S</scp> elin <scp>C</scp> o) over the <scp>T</scp> ibetan <scp>P</scp> lateau during 2003–2012 from a basinâ€wide hydrological modeling. Water Resources Research, 2015, 51, 8060-8086.	4.2	137
85	Wavelet Neural Modeling for Hydrologic Time Series Forecasting with Uncertainty Evaluation. Water Resources Management, 2015, 29, 1789-1801.	3.9	9
86	Energy-Based Wavelet De-Noising of Hydrologic Time Series. PLoS ONE, 2014, 9, e110733.	2.5	7
87	The impact of changing environments on the runoff regimes of the arid Heihe River basin, China. Theoretical and Applied Climatology, 2014, 115, 187-195.	2.8	15
88	Comparison of the MK test and EMD method for trend identification in hydrological time series. Journal of Hydrology, 2014, 510, 293-298.	5.4	139
89	Spatial and temporal variability of precipitation extrema in the Haihe River Basin, China. Hydrological Processes, 2014, 28, 926-932.	2.6	6
90	Discrete waveletâ€based trend identification in hydrologic time series. Hydrological Processes, 2013, 27, 2021-2031.	2.6	42

#	Article	lF	CITATIONS
91	Projection of future rainfall for the North China Plain using two statistical downscaling models and its hydrological implications. Stochastic Environmental Research and Risk Assessment, 2013, 27, 1783-1797.	4.0	26
92	Improved Wavelet Modeling Framework for Hydrologic Time Series Forecasting. Water Resources Management, 2013, 27, 2807-2821.	3.9	54
93	Bayesian-combined wavelet regressive modeling for hydrologic time series forecasting. Science Bulletin, 2013, 58, 3796-3805.	1.7	12
94	Wavelet entropy-based investigation into the daily precipitation variability in the Yangtze River Delta, China, with rapid urbanizations. Theoretical and Applied Climatology, 2013, 111, 361-370.	2.8	14
95	Investigation into the daily precipitation variability in the Yangtze River Delta, China. Hydrological Processes, 2013, 27, 175-185.	2.6	30
96	What factors are responsible for the Beijing storm?. Natural Hazards, 2013, 65, 2399-2400.	3.4	16
97	Spatial and temporal variability of daily temperature during 1961–2010 in the Yangtze River Basin, China. Quaternary International, 2013, 304, 33-42.	1.5	19
98	A review on the applications of wavelet transform in hydrology time series analysis. Atmospheric Research, 2013, 122, 8-15.	4.1	247
99	A comparison of three multi-site statistical downscaling models for daily rainfall in the North China Plain. Theoretical and Applied Climatology, 2013, 111, 585-600.	2.8	48
100	Temporal–Spatial Climate Variability in the Headwater Drainage Basins of the Yangtze River and Yellow River, China. Journal of Climate, 2013, 26, 5061-5071.	3.2	12
101	Improved continuous wavelet analysis of variation in the dominant period of hydrological time series. Hydrological Sciences Journal, 2013, 58, 118-132.	2.6	13
102	Discrete Wavelet Entropy Aided Detection of Abrupt Change: A Case Study in the Haihe River Basin, China. Entropy, 2012, 14, 1274-1284.	2.2	10
103	A Practical Guide to Discrete Wavelet Decomposition of Hydrologic Time Series. Water Resources Management, 2012, 26, 3345-3365.	3.9	84
104	Spatial and temporal variability of daily temperature in the Yangtze River Delta, China. Atmospheric Research, 2012, 112, 12-24.	4.1	26
105	Period identification in hydrologic time series using empirical mode decomposition and maximum entropy spectral analysis. Journal of Hydrology, 2012, 424-425, 154-164.	5.4	66
106	Wavelet-Based Analysis on the Complexity of Hydrologic Series Data under Multi-Temporal Scales. Entropy, 2011, 13, 195-210.	2.2	33
107	Entropy-Based Method of Choosing the Decomposition Level in Wavelet Threshold De-noising. Entropy, 2010, 12, 1499-1513.	2.2	40
108	Uncertainty Analysis of Decomposition Level Choice in Wavelet Threshold De-Noising. Entropy, 2010, 12, 2386-2396.	2.2	7

#	Article	IF	CITATIONS
109	Probabilistic Forecast and Uncertainty Assessment of Hydrologic Design Values Using Bayesian Theories. Human and Ecological Risk Assessment (HERA), 2010, 16, 1184-1207.	3.4	14
110	A New Method of Periods' Identification in Hydrologic Series Based on EEMD. , 2009, , .		1
111	One Improved SAGA-ML Method for Parameters Estimation of Hydrologic Frequency Models. , 2009, , .		0
112	Entropy-Based Wavelet De-noising Method for Time Series Analysis. Entropy, 2009, 11, 1123-1147.	2.2	63
113	The relation between periods' identification and noises in hydrologic series data. Journal of Hydrology, 2009, 368, 165-177.	5.4	77
114	Study on the WCC Method for Time Series Data Analysis. , 2009, , .		0
115	Comparative Study of Some Improved ANN-Models for Hydrologic Time Series Forecast. , 2009, , .		3
116	An Improved Wavelet De-noising Method for Time Series Analysis. , 2009, , .		4
117	New Method for Estimating Periods in Hydrologic Series Data. , 2008, , .		1
118	A Stochastic Model for Mid-to-Long-Term Runoff Forecast. , 2008, , .		3
119	"Assessing the key drivers of stream network configuration dynamics for tectonically active drainage basins using multitemporal satellite imagery and statistical analyses― Geocarto International, 0, , 1-32.	3.5	1