Ivan Marusic

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8474222/ivan-marusic-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

228 11,889 105 55 h-index g-index citations papers 6.89 246 13,952 3.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
228	Investigation of cold-wire spatial and temporal resolution issues in thermal turbulent boundary layers. <i>International Journal of Heat and Fluid Flow</i> , 2022 , 94, 108926	2.4	O
227	An extensional strain sensing mechanosome drives adhesion-independent platelet activation at supraphysiological hemodynamic gradients <i>BMC Biology</i> , 2022 , 20, 73	7.3	0
226	An energy-efficient pathway to turbulent drag reduction. <i>Nature Communications</i> , 2021 , 12, 5805	17.4	3
225	Data-driven enhancement of coherent structure-based models for predicting instantaneous wall turbulence. <i>International Journal of Heat and Fluid Flow</i> , 2021 , 92, 108879	2.4	2
224	Spanwise velocity statistics in high-Reynolds-number turbulent boundary layers. <i>Journal of Fluid Mechanics</i> , 2021 , 913,	3.7	3
223	Active and inactive components of the streamwise velocity in wall-bounded turbulence. <i>Journal of Fluid Mechanics</i> , 2021 , 914,	3.7	4
222	Characterising Momentum Flux Events in High Reynolds Number Turbulent Boundary Layers. <i>Fluids</i> , 2021 , 6, 168	1.6	4
221	13th International Symposium on Particle Image Velocimetry (ISPIV 2019). <i>Measurement Science and Technology</i> , 2021 , 32, 060201	2	
220	Prograde vortices, internal shear layers and the Taylor microscale in high-Reynolds-number turbulent boundary layers. <i>Journal of Fluid Mechanics</i> , 2021 , 920,	3.7	2
2 19	Leonardo da Vinci and Fluid Mechanics. Annual Review of Fluid Mechanics, 2021, 53, 1-25	22	9
218	Are surgical masks manufactured from sterilisation wrap safe?. <i>Infection, Disease and Health</i> , 2021 , 26, 104-109	4.6	1
217	Coriolis effect on centrifugal buoyancy-driven convection in a thin cylindrical shell. <i>Journal of Fluid Mechanics</i> , 2021 , 910,	3.7	2
216	Energy transfer in turbulent channel flows and implications for resolvent modelling. <i>Journal of Fluid Mechanics</i> , 2021 , 911,	3.7	5
215	Experimental study of a turbulent boundary layer with a rough-to-smooth change in surface conditions at high Reynolds numbers. <i>Journal of Fluid Mechanics</i> , 2021 , 923,	3.7	2
214	A direct comparison of pulsatile and non-pulsatile rough-wall turbulent pipe flow. <i>Journal of Fluid Mechanics</i> , 2020 , 895,	3.7	4
213	A scheme to correct the influence of calibration misalignment for cross-wire probes in turbulent shear flows. <i>Experiments in Fluids</i> , 2020 , 61, 1	2.5	5
212	On the mixing length eddies and logarithmic mean velocity profile in wall turbulence. <i>Journal of Fluid Mechanics</i> , 2020 , 887,	3.7	8

(2019-2020)

211	Forcing frequency effects on turbulence dynamics in pulsatile pipe flow. <i>International Journal of Heat and Fluid Flow</i> , 2020 , 82, 108538	2.4	3	
210	The effect of spanwise wavelength of surface heterogeneity on turbulent secondary flows. <i>Journal of Fluid Mechanics</i> , 2020 , 894,	3.7	17	
209	Towards an improved spatial representation of a boundary layer from the attached eddy model. <i>Physical Review Fluids</i> , 2020 , 5,	2.8	8	
208	Spectral-scaling-based extension to the attached eddy model of wall turbulence. <i>Physical Review Fluids</i> , 2020 , 5,	2.8	6	
207	Large-scale structures predicted by linear models of wall-bounded turbulence. <i>Journal of Physics:</i> Conference Series, 2020 , 1522, 012006	0.3	О	
206	Pressure power spectrum in high-Reynolds number wall-bounded flows. <i>International Journal of Heat and Fluid Flow</i> , 2020 , 84, 108620	2.4	5	
205	Two-dimensional cross-spectrum of the streamwise velocity in turbulent boundary layers. <i>Journal of Fluid Mechanics</i> , 2020 , 890,	3.7	9	
204	Data-driven decomposition of the streamwise turbulence kinetic energy in boundary layers. Part 1. Energy spectra. <i>Journal of Fluid Mechanics</i> , 2020 , 882,	3.7	24	
203	Data-driven decomposition of the streamwise turbulence kinetic energy in boundary layers. Part 2. Integrated energy and. <i>Journal of Fluid Mechanics</i> , 2020 , 882,	3.7	18	
202	Near wall coherence in wall-bounded flows and implications for flow control. <i>International Journal of Heat and Fluid Flow</i> , 2020 , 86, 108683	2.4	1	
201	Experimental fluid dynamics characterization of a novel micropump-mixer. <i>Biomicrofluidics</i> , 2020 , 14, 044116	3.2		
200	Periodicity of large-scale coherence in turbulent boundary layers. <i>International Journal of Heat and Fluid Flow</i> , 2020 , 83, 108575	2.4	2	
199	Streamwise inclination angle of large wall-attached structures in turbulent boundary layers. <i>Journal of Fluid Mechanics</i> , 2019 , 877,	3.7	10	
198	Drag forces on a bed particle in open-channel flow: effects of pressure spatial fluctuations and very-large-scale motions. <i>Journal of Fluid Mechanics</i> , 2019 , 863, 494-512	3.7	17	
197	Coherent structures in the linearized impulse response of turbulent channel flow. <i>Journal of Fluid Mechanics</i> , 2019 , 863, 1190-1203	3.7	12	
196	Friction factor decomposition for rough-wall flows: theoretical background and application to open-channel flows. <i>Journal of Fluid Mechanics</i> , 2019 , 872, 626-664	3.7	30	
195	Coherent large-scale structures from the linearized NavierBtokes equations. <i>Journal of Fluid Mechanics</i> , 2019 , 873, 89-109	3.7	17	
194	Recovery of wall-shear stress to equilibrium flow conditions after a rough-to-smooth step change in turbulent boundary layers. <i>Journal of Fluid Mechanics</i> , 2019 , 872, 472-491	3.7	13	

193	Spatial averaging effects on the streamwise and wall-normal velocity measurements in a wall-bounded turbulence using a cross-wire probe. <i>Measurement Science and Technology</i> , 2019 , 30, 08.	5363	7
192	Simultaneous skin friction and velocity measurements in high Reynolds number pipe and boundary layer flows. <i>Journal of Fluid Mechanics</i> , 2019 , 871, 377-400	3.7	13
191	A comparative study of the velocity and vorticity structure in pipes and boundary layers at friction Reynolds numbers up to. <i>Journal of Fluid Mechanics</i> , 2019 , 869, 182-213	3.7	8
190	Sensitivity of turbulent stresses in boundary layers to cross-wire probe uncertainties in the geometry and calibration procedure. <i>Measurement Science and Technology</i> , 2019 , 30, 085301	2	5
189	Vertical Coherence of Turbulence in the Atmospheric Surface Layer: Connecting the Hypotheses of Townsend and Davenport. <i>Boundary-Layer Meteorology</i> , 2019 , 172, 199-214	3.4	11
188	Attached Eddy Model of Wall Turbulence. Annual Review of Fluid Mechanics, 2019 , 51, 49-74	22	118
187	Hydraulic resistance in open-channel flows over self-affine rough beds. <i>Journal of Hydraulic Research/De Recherches Hydrauliques</i> , 2019 , 57, 183-196	1.9	21
186	Active Micropump-Mixer for Rapid Antiplatelet Drug Screening in Whole Blood. <i>Analytical Chemistry</i> , 2019 , 91, 10830-10839	7.8	7
185	Velocity probability distribution scaling in wall-bounded flows at high Reynolds numbers. <i>Physical Review Fluids</i> , 2019 , 4,	2.8	3
184	Estimating large-scale structures in wall turbulence using linear models. <i>Journal of Fluid Mechanics</i> , 2018 , 842, 146-162	3.7	51
183	Towards fully-resolved PIV measurements in high Reynolds number turbulent boundary layers with DSLR cameras. <i>Journal of Visualization</i> , 2018 , 21, 369-379	1.6	3
182	Assessment of a miniature four-roll mill and a cross-slot microchannel for high-strain-rate stagnation point flows. <i>Measurement Science and Technology</i> , 2018 , 29, 045302	2	6
181	Revisiting end conduction effects in constant temperature hot-wire anemometry. <i>Experiments in Fluids</i> , 2018 , 59, 1	2.5	2
180	Fully resolved measurements of turbulent boundary layer flows up to. <i>Journal of Fluid Mechanics</i> , 2018 , 851, 391-415	3.7	55
179	Elastomeric microvalve geometry affects haemocompatibility. <i>Lab on A Chip</i> , 2018 , 18, 1778-1792	7.2	4
178	Conditionally averaged flow topology about a critical point pair in the skin friction field of pipe flows using direct numerical simulations. <i>Physical Review Fluids</i> , 2018 , 3,	2.8	8
177	Hierarchical random additive model for the spanwise and wall-normal velocities in wall-bounded flows at high Reynolds numbers. <i>Physical Review Fluids</i> , 2018 , 3,	2.8	10
176	Impact of mismatched and misaligned laser light sheet profiles on PIV performance. <i>Experiments in Fluids</i> , 2018 , 59, 1	2.5	5

(2017-2018)

175	Simultaneous micro-PIV measurements and real-time control trapping in a cross-slot channel. <i>Experiments in Fluids</i> , 2018 , 59, 1	2.5	6
174	Trajectory of a synthetic jet issuing into high-Reynolds-number turbulent boundary layers. <i>Journal of Fluid Mechanics</i> , 2018 , 856, 531-551	3.7	8
173	Transition to ultimate Rayleigh B flard turbulence revealed through extended self-similarity scaling analysis of the temperature structure functions. <i>Journal of Fluid Mechanics</i> , 2018 , 851,	3.7	5
172	Large coherence of spanwise velocity in turbulent boundary layers. <i>Journal of Fluid Mechanics</i> , 2018 , 847, 161-185	3.7	17
171	Distance-from-the-wall scaling of turbulent motions in wall-bounded flows. <i>Physics of Fluids</i> , 2017 , 29, 020712	4.4	45
170	Reynolds number trend of hierarchies and scale interactions in turbulent boundary layers. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375,	3	29
169	Fractal scaling of the turbulence interface in gravity currents. Journal of Fluid Mechanics, 2017, 820,	3.7	9
168	Self-similarity of wall-attached turbulence in boundary layers. <i>Journal of Fluid Mechanics</i> , 2017 , 823,	3.7	51
167	Measurements from flame chemiluminescence tomography of forced laminar premixed propane flames. <i>Combustion and Flame</i> , 2017 , 183, 1-14	5.3	31
166	Interfaces of uniform momentum zones in turbulent boundary layers. <i>Journal of Fluid Mechanics</i> , 2017 , 820, 451-478	3.7	32
165	Universality of the energy-containing structures in wall-bounded turbulence. <i>Journal of Fluid Mechanics</i> , 2017 , 823, 498-510	3.7	8
164	Skin-friction drag reduction in a high-Reynolds-number turbulent boundary layer via real-time control of large-scale structures. <i>International Journal of Heat and Fluid Flow</i> , 2017 , 67, 30-41	2.4	36
163	Global and local aspects of entrainment in temporal plumes. Journal of Fluid Mechanics, 2017, 812, 222-	25 59	21
162	Applicability of Taylor hypothesis in rough- and smooth-wall boundary layers. <i>Journal of Fluid Mechanics</i> , 2017 , 812, 398-417	3.7	23
161	Revisiting the law of the wake in wall turbulence. <i>Journal of Fluid Mechanics</i> , 2017 , 811, 421-435	3.7	22
160	Generalization of the PIV loss-of-correlation formula introduced by Keane and Adrian. <i>Experiments in Fluids</i> , 2017 , 58, 1	2.5	13
159	Statistics of turbulence in the energy-containing range of Taylor Couette compared to canonical wall-bounded flows. <i>Journal of Fluid Mechanics</i> , 2017 , 830, 797-819	3.7	10
158	Beam stability and warm-up effects of Nd:YAG lasers used in particle image velocimetry. Measurement Science and Technology, 2017, 28, 065301	2	4

157	Two-dimensional energy spectra in high-Reynolds-number turbulent boundary layers. <i>Journal of Fluid Mechanics</i> , 2017 , 826,	3.7	29
156	Turbulence in the Era of Big Data: Recent Experiences with Sharing Large Datasets 2017, 497-507		2
155	Study of the Streamwise Evolution of Turbulent Boundary Layers to High Reynolds Numbers 2017 , 47	-60	1
154	Dissipation scaling in constant-pressure turbulent boundary layers. <i>Physical Review Fluids</i> , 2017 , 2,	2.8	16
153	Reynolds number and roughness effects on turbulent stresses in sandpaper roughness boundary layers. <i>Physical Review Fluids</i> , 2017 , 2,	2.8	7
152	Structure function tensor scaling in the logarithmic region derived from the attached eddy model of wall-bounded turbulent flows. <i>Physical Review Fluids</i> , 2017 , 2,	2.8	16
151	Scaling of the streamwise turbulence intensity in the context of inner-outer interactions in wall turbulence*. <i>Physical Review Fluids</i> , 2017 , 2,	2.8	44
150	Modelling and operation of sub-miniature constant temperature hot-wire anemometry. <i>Measurement Science and Technology</i> , 2016 , 27, 125301	2	4
149	Comparison of turbulent boundary layers over smooth and rough surfaces up to high Reynolds numbers [ERRATUM. <i>Journal of Fluid Mechanics</i> , 2016 , 797, 917-917	3.7	1
148	Reconstruction of Wall Shear-Stress Fluctuations in a Shallow Tidal River. <i>ERCOFTAC Series</i> , 2016 , 247	-2 <i>57</i> .1	
147	The coupling between inner and outer scales in a zero pressure boundary layer evaluated using a HIder exponent framework. <i>Fluid Dynamics Research</i> , 2016 , 48, 021405	1.2	6
146	Attached Eddies and High-Order Statistics. <i>ERCOFTAC Series</i> , 2016 , 47-60	0.1	1
145	Influence of spatial exclusion on the statistical behavior of attached eddies. <i>Physical Review Fluids</i> , 2016 , 1,	2.8	16
144	Hierarchical random additive process and logarithmic scaling of generalized high order, two-point correlations in turbulent boundary layer flow. <i>Physical Review Fluids</i> , 2016 , 1,	2.8	26
143	Extended self-similarity in moment-generating-functions in wall-bounded turbulence at high Reynolds number. <i>Physical Review Fluids</i> , 2016 , 1,	2.8	22
142	Spectral stochastic estimation of high-Reynolds-number wall-bounded turbulence for a refined inner-outer interaction model. <i>Physical Review Fluids</i> , 2016 , 1,	2.8	56
141	Smooth- and rough-wall boundary layer structure from high spatial range particle image velocimetry. <i>Physical Review Fluids</i> , 2016 , 1,	2.8	11

139	The anisotropic structure of turbulence and its energy spectrum. <i>Physics of Fluids</i> , 2016 , 28, 011701	4.4	16	
138	Entrainment at multi-scales across the turbulent/non-turbulent interface in an axisymmetric jet. <i>Journal of Fluid Mechanics</i> , 2016 , 802, 690-725	3.7	41	
137	Uniform momentum zones in turbulent boundary layers. <i>Journal of Fluid Mechanics</i> , 2016 , 786, 309-331	3.7	65	
136	Self-similarity of the large-scale motions in turbulent pipe flow. <i>Journal of Fluid Mechanics</i> , 2016 , 792,	3.7	47	
135	Comparison of turbulent boundary layers over smooth and rough surfaces up to high Reynolds numbers. <i>Journal of Fluid Mechanics</i> , 2016 , 795, 210-240	3.7	79	
134	Moment generating functions and scaling laws in the inertial layer of turbulent wall-bounded flows. <i>Journal of Fluid Mechanics</i> , 2016 , 791,	3.7	23	
133	Wall-drag measurements of smooth- and rough-wall turbulent boundary layers using a floating element. <i>Experiments in Fluids</i> , 2016 , 57, 1	2.5	24	
132	InnerButer interactions in rough-wall turbulence. <i>Journal of Turbulence</i> , 2016 , 17, 1159-1178	2.1	22	
131	An investigation of channel flow with a smooth air water interface. Experiments in Fluids, 2015, 56, 1	2.5	1	
130	The statistical behaviour of attached eddies. <i>Physics of Fluids</i> , 2015 , 27, 015104	4.4	54	
129	On the universality of inertial energy in the log layer of turbulent boundary layer and pipe flows. <i>Experiments in Fluids</i> , 2015 , 56, 1	2.5	22	
128	Wavelet analysis of wall turbulence to study large-scale modulation of small scales. <i>Experiments in Fluids</i> , 2015 , 56, 1	2.5	53	
127	Scaling of second- and higher-order structure functions in turbulent boundary layers. <i>Journal of Fluid Mechanics</i> , 2015 , 769, 654-686	3.7	51	
126	Evolution of zero-pressure-gradient boundary layers from different tripping conditions. <i>Journal of Fluid Mechanics</i> , 2015 , 783, 379-411	3.7	7 ²	
125	An Extended View of the Inner-outer Interaction Model for Wall-bounded Turbulence Using Spectral Linear Stochastic Estimation. <i>Procedia Engineering</i> , 2015 , 126, 24-28		4	
124	Advances in three-dimensional coronary imaging and computational fluid dynamics: is virtual fractional flow reserve more than just a pretty picture?. <i>Coronary Artery Disease</i> , 2015 , 26 Suppl 1, e43-	54·4	8	
123	Temporally optimized spanwise vorticity sensor measurements in turbulent boundary layers. <i>Experiments in Fluids</i> , 2015 , 56, 1	2.5	21	
122	High spatial range velocity measurements in a high Reynolds number turbulent boundary layer. <i>Physics of Fluids</i> , 2014 , 26, 025117	4.4	38	

121	The turbulent/non-turbulent interface and entrainment in a boundary layer. <i>Journal of Fluid Mechanics</i> , 2014 , 742, 119-151	3.7	107
120	Scaling of the turbulent/non-turbulent interface in boundary layers. <i>Journal of Fluid Mechanics</i> , 2014 , 751, 298-328	3.7	27
119	Modeling bed shear-stress fluctuations in a shallow tidal channel. <i>Journal of Geophysical Research: Oceans</i> , 2014 , 119, 3185-3199	3.3	10
118	A calibration technique to correct sensor drift issues in hot-wire anemometry. <i>Measurement Science and Technology</i> , 2014 , 25, 105304	2	44
117	Self-similarity in the inertial region of wall turbulence. <i>Physical Review E</i> , 2014 , 90, 063015	2.4	18
116	Multiscale analysis of fluxes at the turbulent/non-turbulent interface in high Reynolds number boundary layers. <i>Physics of Fluids</i> , 2014 , 26, 015105	4.4	39
115	Reynolds-number-dependent turbulent inertia and onset of log region in pipe flows. <i>Journal of Fluid Mechanics</i> , 2014 , 757, 747-769	3.7	41
114	Amplitude modulation of all three velocity components in turbulent boundary layers. <i>Journal of Fluid Mechanics</i> , 2014 , 746,	3.7	101
113	Controlling the Large-Scale Motions in a Turbulent Boundary Layer. <i>Lecture Notes in Mechanical Engineering</i> , 2014 , 17-26	0.4	4
112	Wall-bounded turbulence. <i>Physics Today</i> , 2013 , 66, 25-30	0.9	43
112	Wall-bounded turbulence. <i>Physics Today</i> , 2013 , 66, 25-30 Minimization of divergence error in volumetric velocity measurements and implications for turbulence statistics. <i>Experiments in Fluids</i> , 2013 , 54, 1	0.9	43 36
	Minimization of divergence error in volumetric velocity measurements and implications for		
111	Minimization of divergence error in volumetric velocity measurements and implications for turbulence statistics. <i>Experiments in Fluids</i> , 2013 , 54, 1 Evolution of the turbulent/non-turbulent interface of an axisymmetric turbulent jet. <i>Experiments in</i>	2.5	36
111	Minimization of divergence error in volumetric velocity measurements and implications for turbulence statistics. <i>Experiments in Fluids</i> , 2013 , 54, 1 Evolution of the turbulent/non-turbulent interface of an axisymmetric turbulent jet. <i>Experiments in Fluids</i> , 2013 , 54, 1 LES of the adverse-pressure gradient turbulent boundary layer. <i>International Journal of Heat and</i>	2.5	36
1111 1100 109	Minimization of divergence error in volumetric velocity measurements and implications for turbulence statistics. <i>Experiments in Fluids</i> , 2013 , 54, 1 Evolution of the turbulent/non-turbulent interface of an axisymmetric turbulent jet. <i>Experiments in Fluids</i> , 2013 , 54, 1 LES of the adverse-pressure gradient turbulent boundary layer. <i>International Journal of Heat and Fluid Flow</i> , 2013 , 44, 293-300 Spatial averaging of velocity measurements in wall-bounded turbulence: single hot-wires.	2.5 2.5 2.4	36 23 11
111 110 109 108	Minimization of divergence error in volumetric velocity measurements and implications for turbulence statistics. <i>Experiments in Fluids</i> , 2013 , 54, 1 Evolution of the turbulent/non-turbulent interface of an axisymmetric turbulent jet. <i>Experiments in Fluids</i> , 2013 , 54, 1 LES of the adverse-pressure gradient turbulent boundary layer. <i>International Journal of Heat and Fluid Flow</i> , 2013 , 44, 293-300 Spatial averaging of velocity measurements in wall-bounded turbulence: single hot-wires. <i>Measurement Science and Technology</i> , 2013 , 24, 115301 Estimating wall-shear-stress fluctuations given an outer region input. <i>Journal of Fluid Mechanics</i> ,	2.5 2.5 2.4	36 23 11 5
1111 1100 109 108	Minimization of divergence error in volumetric velocity measurements and implications for turbulence statistics. <i>Experiments in Fluids</i> , 2013 , 54, 1 Evolution of the turbulent/non-turbulent interface of an axisymmetric turbulent jet. <i>Experiments in Fluids</i> , 2013 , 54, 1 LES of the adverse-pressure gradient turbulent boundary layer. <i>International Journal of Heat and Fluid Flow</i> , 2013 , 44, 293-300 Spatial averaging of velocity measurements in wall-bounded turbulence: single hot-wires. <i>Measurement Science and Technology</i> , 2013 , 24, 115301 Estimating wall-shear-stress fluctuations given an outer region input. <i>Journal of Fluid Mechanics</i> , 2013 , 715, 163-180 Pressure gradient effects on the large-scale structure of turbulent boundary layers. <i>Journal of Fluid</i>	2.5 2.5 2.4 2	362311598

(2012-2013)

103	Structure Inclination Angles in the Convective Atmospheric Surface Layer. <i>Boundary-Layer Meteorology</i> , 2013 , 147, 41-50	3.4	36
102	Enhancing Tomo-PIV reconstruction quality by reducing ghost particles. <i>Measurement Science and Technology</i> , 2013 , 24, 024010	2	19
101	Spatial averaging of streamwise and spanwise velocity measurements in wall-bounded turbulence using ?- and Eprobes. <i>Measurement Science and Technology</i> , 2013 , 24, 115302	2	10
100	Multiscale geometry and scaling of the turbulent-nonturbulent interface in high Reynolds number boundary layers. <i>Physical Review Letters</i> , 2013 , 111, 044501	7.4	60
99	Obtaining accurate mean velocity measurements in high Reynolds number turbulent boundary layers using Pitot tubes. <i>Journal of Fluid Mechanics</i> , 2013 , 715, 642-670	3.7	48
98	Amplitude and frequency modulation in wall turbulence. <i>Journal of Fluid Mechanics</i> , 2012 , 712, 61-91	3.7	113
97	Induced flow due to blowing and suction flow control: an analysis of transpiration. <i>Journal of Fluid Mechanics</i> , 2012 , 690, 366-398	3.7	9
96	Assessment of tomographic PIV in wall-bounded turbulence using direct numerical simulation data. <i>Experiments in Fluids</i> , 2012 , 52, 425-440	2.5	20
95	Coherent structures in flow over hydraulic engineering surfaces. <i>Journal of Hydraulic Research/De Recherches Hydrauliques</i> , 2012 , 50, 451-464	1.9	81
94	The topology of skin friction and surface vorticity fields in wall-bounded flows. <i>Journal of Turbulence</i> , 2012 , 13, N6	2.1	27
93	Taking the "waste" out of "wastewater" for human water security and ecosystem sustainability. <i>Science</i> , 2012 , 337, 681-6	33.3	394
92	Response to "Letter to the editor regarding 'crossing turbulent boundaries: interfacial flux in environmental flows'". <i>Environmental Science & Environmental Science & Enviro</i>	10.3	
91	Towards Reconciling the Large-Scale Structure of Turbulent Boundary Layers in the Atmosphere and Laboratory. <i>Boundary-Layer Meteorology</i> , 2012 , 145, 273-306	3.4	154
90	Spring constant calibration of atomic force microscope cantilevers of arbitrary shape. <i>Review of Scientific Instruments</i> , 2012 , 83, 103705	1.7	167
89	Effective diffusivity and mass flux across the sediment-water interface in streams. <i>Water Resources Research</i> , 2012 , 48,	5.4	33
88	Reynolds number effects on scale energy balance in wall turbulence. <i>Physics of Fluids</i> , 2012 , 24, 015101	4.4	24
87	Large-scale eddies and their role in entrainment in turbulent jets and wakes. <i>Physics of Fluids</i> , 2012 , 24, 055108	4.4	49
86	Emergence of the four layer dynamical regime in turbulent pipe flow. <i>Physics of Fluids</i> , 2012 , 24, 045107	4.4	22

85	Inner-layer intensities for the flat-plate turbulent boundary layer combining a predictive wall-model with large-eddy simulations. <i>Physics of Fluids</i> , 2012 , 24, 075102	4.4	27	
84	Pressure fluctuation in high-Reynolds-number turbulent boundary layer: results from experiments and DNS. <i>Journal of Turbulence</i> , 2012 , 13, N50	2.1	17	
83	High R eynolds Number Wall Turbulence. <i>Annual Review of Fluid Mechanics</i> , 2011 , 43, 353-375	22	506	
82	The relationship between the velocity skewness and the amplitude modulation of the small scale by the large scale in turbulent boundary layers. <i>Physics of Fluids</i> , 2011 , 23, 121702	4.4	7 2	
81	A wall-shear stress predictive model. <i>Journal of Physics: Conference Series</i> , 2011 , 318, 012003	0.3	8	
80	Spatial resolution correction for wall-bounded turbulence measurements. <i>Journal of Fluid Mechanics</i> , 2011 , 676, 41-53	3.7	78	
79	A predictive innerButer model for streamwise turbulence statistics in wall-bounded flows. <i>Journal of Fluid Mechanics</i> , 2011 , 681, 537-566	3.7	128	
78	Three-dimensional conditional structure of a high-Reynolds-number turbulent boundary layer. <i>Journal of Fluid Mechanics</i> , 2011 , 673, 255-285	3.7	115	
77	Dr Timothy Bruce Nickels (1966\(\mathbb{Q}\)010). <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2011 , 369, 706-708	3		
76	Spatial resolution correction for hot-wire anemometry in wall turbulence. <i>Experiments in Fluids</i> , 2011 , 50, 1443-1453	2.5	26	
75	Comparison of turbulent channel and pipe flows with varying Reynolds number. <i>Experiments in Fluids</i> , 2011 , 51, 1261-1281	2.5	44	
74	Crossing turbulent boundaries: interfacial flux in environmental flows. <i>Environmental Science & Environmental Science & Technology</i> , 2011 , 45, 7107-13	10.3	37	
73	A parametric study of adverse pressure gradient turbulent boundary layers. <i>International Journal of Heat and Fluid Flow</i> , 2011 , 32, 575-585	2.4	90	
72	Reynolds Number Dependence of the Amplitude Modulated Near-Wall Cycle. <i>ERCOFTAC Series</i> , 2011 , 105-112	0.1	1	
71	Empirical mode decomposition and Hilbert transforms for analysis of oil-film interferograms. <i>Measurement Science and Technology</i> , 2010 , 21, 105405	2	12	
70	Predictive model for wall-bounded turbulent flow. <i>Science</i> , 2010 , 329, 193-6	33.3	278	
69	On the maximum drag reduction due to added polymers in Poiseuille flow. <i>Journal of Fluid Mechanics</i> , 2010 , 659, 473-483	3.7	3	
68	Evolution and lifetimes of flow topology in a turbulent boundary layer. <i>Physics of Fluids</i> , 2010 , 22, 0151	02.4	58	

(2007-2010)

67	The influence of pipe length on turbulence statistics computed from direct numerical simulation data. <i>Physics of Fluids</i> , 2010 , 22, 115107	4.4	85
66	Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues. <i>Physics of Fluids</i> , 2010 , 22, 065103	4.4	471
65	Universal aspects of small-scale motions in turbulence. <i>Journal of Fluid Mechanics</i> , 2010 , 662, 514-539	3.7	78
64	High Reynolds number effects in wall turbulence. <i>International Journal of Heat and Fluid Flow</i> , 2010 , 31, 418-428	2.4	117
63	A High Reynolds Number Turbulent Boundary Layer with Regular B raille-TypelRoughness. <i>IUTAM Symposium on Cellular, Molecular and Tissue Mechanics</i> , 2010 , 69-75	0.3	2
62	Comparison of large-scale amplitude modulation in turbulent boundary layers, pipes, and channel flows. <i>Physics of Fluids</i> , 2009 , 21, 111703	4.4	72
61	A comparison of turbulent pipe, channel and boundary layer flows. <i>Journal of Fluid Mechanics</i> , 2009 , 632, 431-442	3.7	229
60	Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. <i>Journal of Fluid Mechanics</i> , 2009 , 628, 311-337	3.7	443
59	Unravelling turbulence near walls. <i>Journal of Fluid Mechanics</i> , 2009 , 630, 1-4	3.7	23
58	Hot-wire spatial resolution issues in wall-bounded turbulence. <i>Journal of Fluid Mechanics</i> , 2009 , 635, 103-136	3.7	328
57	Use of direct numerical simulation (DNS) data to investigate spatial resolution issues in measurements of wall-bounded turbulence. <i>Measurement Science and Technology</i> , 2009 , 20, 115401	2	39
56	On the asymptotic similarity of the zero-pressure-gradient turbulent boundary layer. <i>Journal of Fluid Mechanics</i> , 2008 , 616, 195-203	3.7	15
55	Study of the Log-Layer Structure in Wall Turbulence Over a Very Large Range of Reynolds Number. <i>Flow, Turbulence and Combustion</i> , 2008 , 81, 115-130	2.5	57
54	Minimum Sustainable Drag for Constant Volume-Flux Pipe Flows. <i>IUTAM Symposium on Cellular, Molecular and Tissue Mechanics</i> , 2008 , 229-235	0.3	
53	Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. <i>Journal of Fluid Mechanics</i> , 2007 , 579, 1-28	3.7	762
52	Laminar and turbulent comparisons for channel flow and flow control. <i>Journal of Fluid Mechanics</i> , 2007 , 570, 467-477	3.7	32
51	Reynolds number invariance of the structure inclination angle in wall turbulence. <i>Physical Review Letters</i> , 2007 , 99, 114504	7.4	104
50	Large-scale influences in near-wall turbulence. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2007 , 365, 647-64	3	375

49	Some predictions of the attached eddy model for a high Reynolds number boundary layer. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2007 , 365, 807-22	3	86
48	Developing an Integrated Approach for Public Participation: A Case of Land-Use Planning in Slovenia. <i>Environment and Planning B: Planning and Design</i> , 2007 , 34, 993-1010		25
47	Use of dual plane PIV to assess scale-by-scale energy budgets in wall turbulence 2007, 343-345		
46	Wall Shear stress measurements in the atmosperhic surface layer 2007 , 511-513		
45	Wall-Bounded Flows 2007 , 871-907		7
44	Fully mapped energy spectra in a high Reynolds number turbulent boundary layer 2007 , 349-351		O
43	Experimental investigation of vortex properties in a turbulent boundary layer. <i>Physics of Fluids</i> , 2006 , 18, 055105	4.4	65
42	Investigation of the log region structure in wall bounded turbulence 2006,		2
41	A Synthetic Inflow Generation Method Using the Attached Eddy Hypothesis 2006,		12
40	Strategies for the visualization of multiple 2D vector fields. <i>IEEE Computer Graphics and Applications</i> , 2006 , 26, 74-82	1.7	19
39	Simultaneous orthogonal-plane particle image velocimetry measurements in a turbulent boundary layer. <i>Journal of Fluid Mechanics</i> , 2006 , 560, 53	3.7	86
38	Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using an atmospheric flow. <i>Journal of Fluid Mechanics</i> , 2006 , 548, 375	3.7	169
37	Assessment of dual plane PIV measurements in wall turbulence using DNS data. <i>Experiments in Fluids</i> , 2006 , 41, 265-278	2.5	30
36	National character does not reflect mean personality trait levels in 49 cultures. <i>Science</i> , 2005 , 310, 96-1	09 3.3	330
35	Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers. <i>Journal of Fluid Mechanics</i> , 2005 , 541, 21	3.7	128
34	Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations. Journal of Fluid Mechanics, 2005 , 524, 57-80	3.7	168
33	EXPERIMENTAL STUDY OF WALL TURBULENCE: IMPLICATIONS FOR CONTROL. <i>Lecture Notes Series, Institute for Mathematical Sciences</i> , 2005 , 207-246	0.1	4
32	Dual-plane PIV technique to determine the complete velocity gradient tensor in a turbulent boundary layer. <i>Experiments in Fluids</i> , 2005 , 39, 222-231	2.5	84

(2001-2005)

31	Turbulence wall-shear stress sensor for the atmospheric surface layer. <i>Measurement Science and Technology</i> , 2005 , 16, 1644-1649	2	16
30	Evidence of the kappa1-1 law in a high-Reynolds-number turbulent boundary layer. <i>Physical Review Letters</i> , 2005 , 95, 074501	7.4	142
29	Turbulence Intensity Similarity Laws For Turbulent Boundary Layers. <i>Fluid Mechanics and Its Applications</i> , 2004 , 17-22	0.2	1
28	Scaling of the Turbulent Boundary Layer at High Reynolds Numbers. <i>Fluid Mechanics and Its Applications</i> , 2004 , 271-277	0.2	1
27	Streamwise turbulence intensity formulation for flat-plate boundary layers. <i>Physics of Fluids</i> , 2003 , 15, 2461-2464	4.4	172
26	An approximate amplitude attenuation correction for hot-film shear stress sensors. <i>Experiments in Fluids</i> , 2003 , 34, 285-290	2.5	10
25	Characteristics of vortex packets in turbulent boundary layers. <i>Journal of Fluid Mechanics</i> , 2003 , 478, 35-46	3.7	335
24	Effective visualization of stereo particle image velocimetry vector fields of a turbulent boundary layer. <i>Journal of Turbulence</i> , 2003 , 4,	2.1	3
23	Investigation of three dimensionality in the near field of a round jet using stereo PIV. <i>Journal of Turbulence</i> , 2002 , 3, N16	2.1	13
22	On the streamwise evolution of turbulent boundary layers in arbitrary pressure gradients. <i>Journal of Fluid Mechanics</i> , 2002 , 461, 61-91	3.7	64
21	Some observations regarding the education of landscape architects for the 21st century. <i>Landscape and Urban Planning</i> , 2002 , 60, 95-103	7.7	6
20	Effects of Changing Aspect Ratio Through a Wind-Tunnel Contraction. <i>AIAA Journal</i> , 2001 , 39, 1800-180	3 2.1	3
19	On the different contributions of coherent structures to the spectra of a turbulent round jet and a turbulent boundary layer. <i>Journal of Fluid Mechanics</i> , 2001 , 448, 367-385	3.7	23
18	On the role of large-scale structures in wall turbulence. <i>Physics of Fluids</i> , 2001 , 13, 735-743	4.4	141
17	Assessment of Reynolds stress predictions by two-equation turbulence models 2001,		1
16	Experimental study of wall boundary conditions for large-eddy simulation. <i>Journal of Fluid Mechanics</i> , 2001 , 446, 309-320	3.7	60
15	Evolution and structure of sink-flow turbulent boundary layers. <i>Journal of Fluid Mechanics</i> , 2001 , 428, 1-27	3.7	87
14	Real Time Feature Extraction for the Analysis of Turbulent Flows. <i>Massive Computing</i> , 2001 , 223-238		3

13	The effect of a changing aspect ratio through a wind tunnel contraction 2000 ,		3	
12	High Reynolds number flows - A challenge for experiment and simulation 1999,		1	
11	New evolution equations for turbulent boundary layers in arbitrary pressure gradients. <i>Sadhana - Academy Proceedings in Engineering Sciences</i> , 1998 , 23, 443-457	1	2	
10	Similarity law for the streamwise turbulence intensity in zero-pressure-gradient turbulent boundary layers. <i>Physics of Fluids</i> , 1997 , 9, 3718-3726	4.4	74	
9	A wall-wake model for the turbulence structure of boundary layers. Part 1. Extension of the attached eddy hypothesis. <i>Journal of Fluid Mechanics</i> , 1995 , 298, 361-388	3.7	227	
8	A wall-wake model for the turbulence structure of boundary layers. Part 2. Further experimental support. <i>Journal of Fluid Mechanics</i> , 1995 , 298, 389-407	3.7	151	
7	Wall turbulence closure based on classical similarity laws and the attached eddy hypothesis. <i>Physics of Fluids</i> , 1994 , 6, 1024-1035	4.4	35	
6	Laminar boundary layer on an impulsively started rotating sphere. <i>Physics of Fluids</i> , 1979 , 22, 1		14	
5	A.A. Townsend305-328			
4	The Eddies and Scales of Wall Turbulence176-220		6	
3	Interactive Poster: Illustrating Different Convection Velocities of Turbulent Flow		1	
2			31	
1	Spatial resolution correction for wall-bounded turbulence measurements		2	