Wei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8474143/publications.pdf Version: 2024-02-01

WELZHANC

#	Article	IF	CITATIONS
1	Advances in Regulatory Strategies of Differentiating Stem Cells towards Keratocytes. Stem Cells International, 2022, 2022, 1-11.	1.2	1
2	Multifunctional polyphenol-based silk hydrogel alleviates oxidative stress and enhances endogenous regeneration of osteochondral defects. Materials Today Bio, 2022, 14, 100251.	2.6	20
3	Effects of Zinc, Magnesium, and Iron Ions on Bone Tissue Engineering. ACS Biomaterials Science and Engineering, 2022, 8, 2321-2335.	2.6	47
4	Nanosilicateâ€Reinforced Silk Fibroin Hydrogel for Endogenous Regeneration of Both Cartilage and Subchondral Bone. Advanced Healthcare Materials, 2022, 11, .	3.9	17
5	Systematic Review of Silk Scaffolds in Musculoskeletal Tissue Engineering Applications in the Recent Decade. ACS Biomaterials Science and Engineering, 2021, 7, 817-840.	2.6	23
6	Copper-based biomaterials for bone and cartilage tissue engineering. Journal of Orthopaedic Translation, 2021, 29, 60-71.	1.9	57
7	Enzymatically crosslinked silk-nanosilicate reinforced hydrogel with dual-lineage bioactivity for osteochondral tissue engineering. Materials Science and Engineering C, 2021, 127, 112215.	3.8	32
8	Carbon-Based Nanomaterials for Bone and Cartilage Regeneration: A Review. ACS Biomaterials Science and Engineering, 2021, 7, 4718-4735.	2.6	35
9	The application of human periodontal ligament stem cells and biomimetic silk scaffold for in situ tendon regeneration. Stem Cell Research and Therapy, 2021, 12, 596.	2.4	18
10	The Application of Mechanical Stimulations in Tendon Tissue Engineering. Stem Cells International, 2020, 2020, 1-14.	1.2	25
11	Sustained Release of TPCAâ€1 from Silk Fibroin Hydrogels Preserves Keratocyte Phenotype and Promotes Corneal Regeneration by Inhibiting Interleukinâ€1 <i>l²</i> Signaling. Advanced Healthcare Materials, 2020, 9, e2000591.	3.9	26
12	Regulation of Keratocyte Phenotype and Cell Behavior by Substrate Stiffness. ACS Biomaterials Science and Engineering, 2020, 6, 5162-5171.	2.6	22
13	Cell-Free Biomimetic Scaffold with Cartilage Extracellular Matrix-Like Architectures for <i>In Situ</i> Inductive Regeneration of Osteochondral Defects. ACS Biomaterials Science and Engineering, 2020, 6, 6917-6925.	2.6	18
14	An all-silk-derived functional nanosphere matrix for sequential biomolecule delivery and in situ osteochondral regeneration. Bioactive Materials, 2020, 5, 832-843.	8.6	48
15	Tannic acid-mediated dual peptide-functionalized scaffolds to direct stem cell behavior and osteochondral regeneration. Chemical Engineering Journal, 2020, 396, 125232.	6.6	43
16	Emerging Trend in the Pharmacotherapy of Osteoarthritis. Frontiers in Endocrinology, 2019, 10, 431.	1.5	68
17	Mechanical stress potentiates the differentiation of periodontal ligament stem cells into keratocytes. British Journal of Ophthalmology, 2018, 102, 562-569.	2.1	18
18	Promotion of Hernia Repair with High-Strength, Flexible, and Bioresorbable Silk Fibroin Mesh in a Large Abdominal Hernia Model. ACS Biomaterials Science and Engineering, 2018, 4, 2067-2080.	2.6	24

Wei Zhang

#	Article	lF	CITATIONS
19	Ascorbic Acid Promotes the Stemness of Corneal Epithelial Stem/Progenitor Cells and Accelerates Epithelial Wound Healing in the Cornea. Stem Cells Translational Medicine, 2017, 6, 1356-1365.	1.6	53
20	Silk Fibroin Biomaterial Shows Safe and Effective Wound Healing in Animal Models and a Randomized Controlled Clinical Trial. Advanced Healthcare Materials, 2017, 6, 1700121.	3.9	173
21	Surface Topography and Mechanical Strain Promote Keratocyte Phenotype and Extracellular Matrix Formation in a Biomimetic 3D Corneal Model. Advanced Healthcare Materials, 2017, 6, 1601238.	3.9	38
22	<i>Fos</i> Promotes Early Stage Teno-Lineage Differentiation of Tendon Stem/Progenitor Cells in Tendon. Stem Cells Translational Medicine, 2017, 6, 2009-2019.	1.6	16
23	Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair. Acta Biomaterialia, 2017, 63, 64-75.	4.1	124
24	Substance P and patterned silk biomaterial stimulate periodontal ligament stem cells to form corneal stroma in a bioengineered three-dimensional model. Stem Cell Research and Therapy, 2017, 8, 260.	2.4	14
25	Characterization and comparison of post-natal rat Achilles tendon-derived stem cells at different development stages. Scientific Reports, 2016, 6, 22946.	1.6	30
26	Human Cartilage-Derived Progenitor Cells From Committed Chondrocytes for Efficient Cartilage Repair and Regeneration. Stem Cells Translational Medicine, 2016, 5, 733-744.	1.6	145
27	Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Research, 2016, 4, 15040.	5.4	355
28	Physical regulation of stem cells differentiation into teno-lineage: current strategies and future direction. Cell and Tissue Research, 2015, 360, 195-207.	1.5	32
29	Intra-Articular Injection of Human Meniscus Stem/Progenitor Cells Promotes Meniscus Regeneration and Ameliorates Osteoarthritis Through Stromal Cell-Derived Factor-1/CXCR4-Mediated Homing. Stem Cells Translational Medicine, 2014, 3, 387-394.	1.6	86
30	Long-term effects of knitted silk–collagen sponge scaffold on anterior cruciate ligament reconstruction and osteoarthritis prevention. Biomaterials, 2014, 35, 8154-8163.	5.7	84
31	Clinical translation of autologous cell-based tissue engineering techniques as Class III therapeutics in China: Taking cartilage tissue engineering as an example. Journal of Orthopaedic Translation, 2014, 2, 56-65.	1.9	5
32	The use of type 1 collagen scaffold containing stromal cell-derived factor-1 to create a matrix environment conducive to partial-thickness cartilage defects repair. Biomaterials, 2013, 34, 713-723.	5.7	129
33	Incorporation of bioactive polyvinylpyrrolidone–iodine within bilayered collagen scaffolds enhances the differentiation and subchondral osteogenesis of mesenchymal stem cells. Acta Biomaterialia, 2013, 9, 8089-8098.	4.1	28
34	The promotion of osteochondral repair by combined intra-articular injection of parathyroid hormone-related protein and implantation of a bi-layer collagen-silk scaffold. Biomaterials, 2013, 34, 6046-6057.	5.7	78
35	Bi-layer collagen/microporous electrospun nanofiber scaffold improves the osteochondral regeneration. Acta Biomaterialia, 2013, 9, 7236-7247.	4.1	110
36	Neonatal Desensitization Supports Long-Term Survival and Functional Integration of Human Embryonic Stem Cell-Derived Mesenchymal Stem Cells in Rat Joint Cartilage Without Immunosuppression. Stem Cells and Development, 2013, 22, 90-101.	1.1	41

#	Article	IF	CITATIONS
37	Inhibitory function of parathyroid hormone-related protein on chondrocyte hypertrophy: the implication for articular cartilage repair. Arthritis Research and Therapy, 2012, 14, 221.	1.6	52