Victor Martin Bolanos-Garcia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8473869/publications.pdf

Version: 2024-02-01

71 papers

2,374 citations

218677 26 h-index 214800 47 g-index

73 all docs 73 docs citations

times ranked

73

3417 citing authors

#	Article	IF	CITATIONS
1	The Biomolecules Journal Club: Highlights on Recent Papers—1. Biomolecules, 2022, 12, 86.	4.0	О
2	The spindle checkpoint proteins BUB1 and BUBR1: (SLiM)ming down to the basics. Trends in Biochemical Sciences, 2022, 47, 352-366.	7.5	12
3	Identification of Novel Potential Heparanase Inhibitors Using Virtual Screening. Catalysts, 2022, 12, 503.	3.5	3
4	Interfacial Activity of Lipoprotein (a) Isoforms with a Variable Number of Kringle IV Type 2 Repeats: A New Indicator of Cardiovascular Risk?. Annals of Clinical and Laboratory Science, 2021, 51, 795-804.	0.2	0
5	Deregulation of Chromosome Segregation and Cancer. Annual Review of Cancer Biology, 2020, 4, 257-278.	4.5	11
6	Editorial: E3 Ubiquitin Ligases: From Structure to Physiology. Frontiers in Physiology, 2020, 11, 621053.	2.8	1
7	Interfering with mRNA Methylation by the 2′O-Methyltransferase (NSP16) from SARS-CoV-2 to Tackle the COVID-19 Disease. Catalysts, 2020, 10, 1023.	3.5	9
8	Pseudokinases: From Allosteric Regulation of Catalytic Domains and the Formation of Macromolecular Assemblies to Emerging Drug Targets. Catalysts, 2019, 9, 778.	3.5	12
9	Combinatorial Use of Chitosan Nanoparticles, Reversine, and Ionising Radiation on Breast Cancer Cells Associated with Mitosis Deregulation. Biomolecules, 2019, 9, 186.	4.0	11
10	A Molecular Modeling Approach to Identify Novel Inhibitors of the Major Facilitator Superfamily of Efflux Pump Transporters. Antibiotics, 2019, 8, 25.	3.7	32
11	The Anaphase Promoting Complex/Cyclosome (APC/C): A Versatile E3 Ubiquitin Ligase. Sub-Cellular Biochemistry, 2019, 93, 539-623.	2.4	6
12	Mps1 Phosphorylates Its N-Terminal Extension to Relieve Autoinhibition and Activate the Spindle Assembly Checkpoint. Current Biology, 2018, 28, 872-883.e5.	3.9	22
13	Co-occurrence of Noonan and Cardiofaciocutaneous Syndrome Features in a Patient with KRAS Variant. Journal of Pediatric Genetics, 2018, 07, 158-163.	0.7	4
14	Cdc20: At the Crossroads between Chromosome Segregation and Mitotic Exit. Trends in Biochemical Sciences, 2017, 42, 193-205.	7.5	109
15	Protein Complexes in the Nucleus: The Control of Chromosome Segregation. Sub-Cellular Biochemistry, 2017, 83, 455-481.	2.4	2
16	BubR1 kinase: protection against aneuploidy and premature aging. Trends in Molecular Medicine, 2015, 21, 364-372.	6.7	48
17	The dynamic protein Knl1 – a kinetochore rendezvous. Journal of Cell Science, 2014, 127, 3415-23.	2.0	38
18	The dynamics of signal amplification by macromolecular assemblies for the control of chromosome segregation. Frontiers in Physiology, 2014, 5, 368.	2.8	4

#	Article	IF	CITATIONS
19	The internal Cdc20 binding site in BubR1 facilitates both spindle assembly checkpoint signalling and silencing. Nature Communications, 2014, 5, 5563.	12.8	55
20	Formation of Multiprotein Assemblies in the Nucleus. International Review of Cell and Molecular Biology, 2014, 307, 151-174.	3.2	3
21	Dynein-dependent transport of spindle assembly checkpoint proteins off kinetochores toward spindle poles. FEBS Letters, 2014, 588, 3265-3273.	2.8	34
22	Structural and Physiological Analyses of the Alkanesulphonate-Binding Protein (SsuA) of the Citrus Pathogen Xanthomonas citri. PLoS ONE, 2013, 8, e80083.	2.5	13
23	Crystal structure, biochemical and biophysical characterisation of NHR1 domain of E3 Ubiquitin ligase neutralized. Advances in Enzyme Research, 2013, 01, 61-75.	1.6	3
24	Structural and functional insights into the role of the N-terminal Mps1 TPR domain in the SAC (spindle assembly checkpoint). Biochemical Journal, 2012, 448, 321-328.	3.7	19
25	Characterization of Spindle Checkpoint Kinase Mps1 Reveals Domain with Functional and Structural Similarities to Tetratricopeptide Repeat Motifs of Bub1 and BubR1 Checkpoint Kinases. Journal of Biological Chemistry, 2012, 287, 5988-6001.	3.4	32
26	The architecture of the BubR1 tetratricopeptide tandem repeat defines a protein motif underlying mitotic checkpoint-kinetochore communication. Bioarchitecture, 2012, 2, 23-27.	1.5	3
27	Difference in lipid packing sensitivity of exchangeable apolipoproteins apoA-l and apoA-ll: An important determinant for their distinctive role in lipid metabolism. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2732-2741.	2.6	4
28	Spatial and temporal organization of multi-protein assemblies: achieving sensitive control in information-rich cell-regulatory systems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 3023-3039.	3 . 4	28
29	1H, 13C and 15N resonance assignments of the kinetochore localisation domain of BUBR1, a central component of the spindle assembly checkpoint. Biomolecular NMR Assignments, 2012, 6, 115-118.	0.8	2
30	Structural Insights into the Role of Domain Flexibility in Human DNA Ligase IV. Structure, 2012, 20, 1212-1222.	3.3	44
31	Spatial and Temporal Organisation of Multiprotein Systems of Cell Regulation and Signalling: What Can We Learn from NHEJ System of Double-Strand Break Repair?. NATO Science for Peace and Security Series A: Chemistry and Biology, 2012, , 1-31.	0.5	1
32	Fluid and Condensed ApoA-I/Phospholipid Monolayers Provide Insights into ApoA-I Membrane Insertion. Journal of Molecular Biology, 2011, 410, 60-76.	4.2	13
33	Structure of a Blinkin-BUBR1 Complex Reveals an Interaction Crucial for Kinetochore-Mitotic Checkpoint Regulation via an Unanticipated Binding Site. Structure, 2011, 19, 1691-1700.	3.3	68
34	Structure of a Blinkin-BUBR1 Complex Reveals an Interaction Crucial for Kinetochore-Mitotic Checkpoint Regulation via an Unanticipated Binding Site. Structure, 2011, 19, 1895.	3.3	0
35	BUB1 and BUBR1: multifaceted kinases of the cell cycle. Trends in Biochemical Sciences, 2011, 36, 141-150.	7.5	158
36	CENP-C Is a Structural Platform for Kinetochore Assembly. Current Biology, 2011, 21, 399-405.	3.9	233

#	Article	IF	CITATIONS
37	Biochemical characterisation of MX-4, a plant cysteine protease of broad specificity and high stability. Food Chemistry, 2011, 126, 543-552.	8.2	5
38	Cell-Cycle Inhibition by Helicobacter pylori L-Asparaginase. PLoS ONE, 2010, 5, e13892.	2.5	54
39	Structural Biology of DNA Repair: Spatial Organisation of the Multicomponent Complexes of Nonhomologous End Joining. Journal of Nucleic Acids, 2010, 2010, 1-19.	1.2	24
40	Defining the Molecular Basis of BubR1 Kinetochore Interactions and APC/C-CDC20 Inhibition. Journal of Biological Chemistry, 2010, 285, 14764-14776.	3.4	37
41	Targeting protein interactions of p53 for therapeutic intervention: Success in a frustrated landscape. Cell Cycle, 2009, 8, 3631-3635.	2.6	2
42	Perspectives on protein crystallisation. Progress in Biophysics and Molecular Biology, 2009, 101, 56-63.	2.9	13
43	New directions in conventional methods of protein crystallization. Progress in Biophysics and Molecular Biology, 2009, 101, 3-12.	2.9	50
44	The Crystal Structure of the N-Terminal Region of BUB1 Provides Insight into the Mechanism of BUB1 Recruitment to Kinetochores. Structure, 2009, 17, 105-116.	3.3	45
45	The alkanesulfonate-binding protein fromXanthomonas axonopodispv.citri. Acta Crystallographica Section A: Foundations and Advances, 2009, 65, s141-s141.	0.3	0
46	Assessment of the Mitotic Spindle Assembly Checkpoint (SAC) as the Target of Anticancer Therapies. Current Cancer Drug Targets, 2009, 9, 131-141.	1.6	16
47	The N-terminal, TPR-containing domain of the mitotic checkpoint protein BUBR1 does not bind fatty acids. Computational Biology and Chemistry, 2008, 32, 139-140.	2.3	3
48	Crystal structure of human XLF/Cernunnos reveals unexpected differences from XRCC4 with implications for NHEJ. EMBO Journal, 2008, 27, 290-300.	7.8	106
49	Surface Rheology and Adsorption Kinetics Reveal the Relative Amphiphilicity, Interfacial Activity, and Stability of Human Exchangeable Apolipoproteins. Biophysical Journal, 2008, 94, 1735-1745.	0.5	14
50	Characterization of the Tetratricopeptide-Containing Domain of BUB1, BUBR1, and PP5 Proves That Domain Amphiphilicity over Amino Acid Sequence Specificity Governs Protein Adsorption and Interfacial Activity. Journal of Physical Chemistry B, 2008, 112, 7984-7991.	2.6	11
51	Protein kinase CK2 as an ectokinase: The role of the regulatory $CK2\hat{1}^2$ subunit. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5693-5698.	7.1	38
52	Structural analysis and classification of native proteins from E. coli commonly co-purified by immobilised metal affinity chromatography. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 1304-1313.	2.4	174
53	Evidence for the Role of the monB Genes in Polyether Ring Formation during Monensin Biosynthesis. Chemistry and Biology, 2006, 13, 453-460.	6.0	109
54	Identifying interaction motifs in CK2 $\hat{1}^2$ \hat{a} \in " a ubiquitous kinase regulatory subunit. Trends in Biochemical Sciences, 2006, 31, 654-661.	7.5	51

#	Article	IF	Citations
55	Evidence that a Novel Thioesterase is Responsible for Polyketide Chain Release during Biosynthesis of the Polyether Ionophore Monensin. ChemBioChem, 2006, 7, 1435-1442.	2.6	57
56	The tight control of nucleation in counterdiffusive flow regimes by hyperfluorinated oils. Journal of Crystal Growth, 2005, 283, 215-221.	1.5	3
57	MET meet adaptors: Functional and structural implications in downstream signalling mediated by the Met receptor. Molecular and Cellular Biochemistry, 2005, 276, 149-157.	3.1	48
58	Aurora kinases. International Journal of Biochemistry and Cell Biology, 2005, 37, 1572-1577.	2.8	130
59	The Conserved N-Terminal Region of the Mitotic Checkpoint Protein BUBR1: A Putative TPR Motif of High Surface Activity. Biophysical Journal, 2005, 89, 2640-2649.	0.5	22
60	Structure of the regulatory subunit of CK2 in the presence of a p21WAF1peptide demonstrates flexibility of the acidic loop. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1698-1704.	2.5	6
61	Cell cycle regulatory protein p27KIP1 is a substrate and interacts with the protein kinase CK2. Journal of Cellular Biochemistry, 2004, 91, 865-879.	2.6	46
62	On the structure and function of apolipoproteins: more than a family of lipid-binding proteins. Progress in Biophysics and Molecular Biology, 2003, 83, 47-68.	2.9	68
63	The use of oil in a counter-diffusive system allows to control nucleation and coarsening during protein crystallization. Journal of Crystal Growth, 2003, 253, 517-523.	1.5	5
64	Amino acid sequence, biochemical characterization, and comparative modeling of a nonspecific lipid transfer protein from Amaranthus hypochondriacus. Archives of Biochemistry and Biophysics, 2003, 415, 24-33.	3.0	24
65	Asymmetry in the Multiprotein Systems of Molecular Biology. Structural Chemistry, 2002, 13, 405-412.	2.0	13
66	Crystallization and Preliminary X-Ray Analysis of Ovocleidin-17 A Major Protein of the Gallus Gallus Eggshell Calcified Layer. Protein and Peptide Letters, 2002, 9, 253-257.	0.9	15
67	Monolayers of Apolipoproteins at the Air/Water Interface. Journal of Physical Chemistry B, 2001, 105, 5757-5765.	2.6	76
68	Phase Transitions in Monolayers of Human Apolipoprotein C-I. Journal of Physical Chemistry B, 1999, 103, 6236-6242.	2.6	27
69	Precrystallization of human apoprotein A-I based on its aggregation behavior in solution studied by dynamic light scattering. Journal of Molecular Structure, 1998, 440, 1-8.	3.6	10
70	Stability of the C-terminal peptide of CETP mediated through an (i, i+4) array. BBA - Proteins and Proteomics, 1998, 1384, 7-15.	2.1	15
71	CETP and exchangeable apoproteins: common features in lipid binding activity. Molecular and Cellular Biochemistry, 1997, 175, 1-10.	3.1	18