Theobald Lohmüller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8473654/publications.pdf Version: 2024-02-01

THEORALD LOHMÃ1/11ED

#	Article	IF	CITATIONS
1	Induction of Cell Polarization and Migration by a Gradient of Nanoscale Variations in Adhesive Ligand Spacing. Nano Letters, 2008, 8, 2063-2069.	9.1	292
2	Plasmonic DNA-Origami Nanoantennas for Surface-Enhanced Raman Spectroscopy. Nano Letters, 2014, 14, 2914-2919.	9.1	187
3	Biomimetic Interfaces for High-Performance Optics in the Deep-UV Light Range. Nano Letters, 2008, 8, 1429-1433.	9.1	146
4	Quantitative Single-Molecule Surface-Enhanced Raman Scattering by Optothermal Tuning of DNA Origami-Assembled Plasmonic Nanoantennas. ACS Nano, 2016, 10, 9809-9815.	14.6	127
5	Optical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives. Nanoscale, 2014, 6, 4458.	5.6	122
6	Synthesis of Quasiâ€Hexagonal Ordered Arrays of Metallic Nanoparticles with Tuneable Particle Size. Advanced Materials, 2008, 20, 2297-2302.	21.0	118
7	Nanopatterning by block copolymer micelle nanolithography and bioinspired applications. Biointerphases, 2011, 6, MR1-MR12.	1.6	118
8	Nanolithography by Plasmonic Heating and Optical Manipulation of Gold Nanoparticles. ACS Nano, 2013, 7, 7648-7653.	14.6	95
9	Optical Injection of Gold Nanoparticles into Living Cells. Nano Letters, 2015, 15, 770-775.	9.1	85
10	Polymeric Substrates with Tunable Elasticity and Nanoscopically Controlled Biomolecule Presentation. Langmuir, 2010, 26, 15472-15480.	3.5	75
11	Light-Controlled Membrane Mechanics and Shape Transitions of Photoswitchable Lipid Vesicles. Langmuir, 2017, 33, 4083-4089.	3.5	74
12	Single Molecule Tracking on Supported Membranes with Arrays of Optical Nanoantennas. Nano Letters, 2012, 12, 1717-1721.	9.1	65
13	An Optically Controlled Microscale Elevator Using Plasmonic Janus Particles. ACS Photonics, 2015, 2, 491-496.	6.6	62
14	Synthesis of Gold Nanostar Arrays as Reliable, Large-Scale, Homogeneous Substrates for Surface-Enhanced Raman Scattering Imaging and Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 22198-22202.	3.1	61
15	Polymer Nanoreactors Shield Perovskite Nanocrystals from Degradation. Nano Letters, 2019, 19, 4928-4933.	9.1	57
16	Optical and Thermophoretic Control of Janus Nanopen Injection into Living Cells. Nano Letters, 2018, 18, 7935-7941.	9.1	54
17	Light-Controlled Lipid Interaction and Membrane Organization in Photolipid Bilayer Vesicles. Langmuir, 2018, 34, 13368-13374.	3.5	53
18	Supported Membranes Embedded with Fixed Arrays of Gold Nanoparticles. Nano Letters, 2011, 11, 4912-4918.	9.1	51

Theobald Lohmüller

#	Article	IF	CITATIONS
19	Bending Gold Nanorods with Light. Nano Letters, 2016, 16, 6485-6490.	9.1	48
20	Targeting de novo lipogenesis as a novel approach in anti-cancer therapy. British Journal of Cancer, 2018, 118, 43-51.	6.4	47
21	Reversible control of current across lipid membranes by local heating. Scientific Reports, 2016, 6, 22686.	3.3	44
22	A Robust, GFP-Orthogonal Photoswitchable Inhibitor Scaffold Extends Optical Control over the Microtubule Cytoskeleton. Cell Chemical Biology, 2021, 28, 228-241.e6.	5.2	43
23	Optofluidic transport and manipulation of plasmonic nanoparticles by thermocapillary convection. Soft Matter, 2018, 14, 628-634.	2.7	38
24	A Lipid Photoswitch Controls Fluidity in Supported Bilayer Membranes. Langmuir, 2020, 36, 2629-2634.	3.5	38
25	Characterization of Nanopore Electrode Structures as Basis for Amplified Electrochemical Assays. Electroanalysis, 2006, 18, 1929-1936.	2.9	35
26	Nano-porous electrode systems by colloidal lithography for sensitive electrochemical detection: fabrication technology and properties. Journal of Micromechanics and Microengineering, 2008, 18, 115011.	2.6	35
27	Nanoscale Obstacle Arrays Frustrate Transport of EphA2–Ephrin-A1 Clusters in Cancer Cell Lines. Nano Letters, 2013, 13, 3059-3064.	9.1	28
28	Photolipid Bilayer Permeability is Controlled by Transient Pore Formation. Langmuir, 2020, 36, 13509-13515.	3.5	27
29	Pushing nanoparticles with light $\hat{a} \in$ " A femtonewton resolved measurement of optical scattering forces. APL Photonics, 2016, 1, .	5.7	24
30	Plasmonic Nanoantenna Arrays for Surface-Enhanced Raman Spectroscopy of Lipid Molecules Embedded in a Bilayer Membrane. ACS Applied Materials & Interfaces, 2014, 6, 8947-8952.	8.0	23
31	Fractional revivals in the rovibrational motion of I2. Journal of Chemical Physics, 2004, 120, 10442-10449.	3.0	22
32	Size-Based Chromatography of Signaling Clusters in a Living Cell Membrane. Nano Letters, 2014, 14, 2293-2298.	9.1	21
33	Optical Membrane Control with Red Light Enabled by Red-Shifted Photolipids. Langmuir, 2022, 38, 385-393.	3.5	21
34	Shrinkâ€ŧoâ€fit Plasmonic Nanostructures. Advanced Optical Materials, 2013, 1, 123-127.	7.3	19
35	Growth mechanisms of phthalocyanine nanowires induced by Au nanoparticle templates. Physical Chemistry Chemical Physics, 2011, 13, 5940.	2.8	18
36	Trans-membrane Fluorescence Enhancement by Carbon Dots: Ionic Interactions and Energy Transfer. Nano Letters, 2019, 19, 3886-3891.	9.1	18

Theobald Lohmüller

#	Article	IF	CITATIONS
37	One-Dimensional Phthalocyanine Nanostructures Directed by Gold Templates. Chemistry of Materials, 2009, 21, 5010-5015.	6.7	15
38	Direct optical monitoring of flow generated by bacterial flagellar rotation. Applied Physics Letters, 2014, 104, 093701.	3.3	14
39	Selfâ€Assembly of Phthalocyanine Nanotubes by Vaporâ€Phase Transport. ChemPhysChem, 2008, 9, 1114-1116.	2.1	11
40	Plasmonic Nanoagents in Biophysics and Biomedicine. Advanced Optical Materials, 2022, 10, .	7.3	7
41	Product piracy from nature: biomimetic microstructures and interfaces for high-performance optics. Proceedings of SPIE, 2008, , .	0.8	6
42	(INVITED) Infrared-to-ultraviolet upconverting nanoparticles for COVID-19-related disinfection applications. Optical Materials: X, 2021, 12, 100099.	0.8	6
43	Chirped pulse ionization: bondlength dynamics and interference effects. Chemical Physics Letters, 2003, 373, 319-327.	2.6	5
44	Contactless and spatially structured cooling by directing thermal radiation. Scientific Reports, 2021, 11, 16209.	3.3	5
45	Determination of transition dipole moments from time-resolved photoelectron spectroscopy. European Physical Journal D, 2003, 25, 95-99.	1.3	4
46	Detecting Swelling States of Red Blood Cells by "Cell–Fluid Coupling Spectroscopy― Advanced Science, 2017, 4, 1600238.	11.2	4
47	Analyzing the Movement of the Nauplius ‘ Artemia salina ’ by Optical Tracking of Plasmonic Nanoparticles. Journal of Visualized Experiments, 2014, , .	0.3	3
48	Improved Properties of Optical Surfaces by Following the Example of the $\hat{a}\in \mathfrak{C}$ Moth Eye $\hat{a}\in \mathfrak{S}$, 0, , .		3
49	Controlling Nonâ€Equilibrium Structure Formation on the Nanoscale. ChemPhysChem, 2017, 18, 3437-3442.	2.1	1
50	Entspiegelung nach dem Vorbild von Mottenaugen. Physik in Unserer Zeit, 2008, 39, 266-267.	0.0	0
51	ELECTRONIC STRUCTURES OF NAKED AND MOLECULAR ENCAPSULATED Au NANOPARTICLES. International Journal of Nanoscience, 2009, 08, 181-184.	0.7	0
52	Investigating the Dynamic Behavior of TCR Microclusters by a Gold Nanoparticle Array. Biophysical Journal, 2013, 104, 119a.	0.5	0
53	Investigation of Diffusion in Structured Samples using Fluorescence Pair Cross Correlation. Biophysical Journal, 2014, 106, 197a.	0.5	0
54	â€~Optical Shaking' of Red Blood Cells: A Strategy to Measure Cell-Fluid Coupling with Optical Tweezers. Biophysical Journal, 2016, 110, 134a.	0.5	0

#	Article	IF	CITATIONS
55	Strategies for Nanofabrication based on Optothermal Manipulation of Plasmonic Nanoparticles. , 2015, , .		0
56	Photonics and Optoelectronics of Nanosystems. Advanced Optical Materials, 2022, 10, .	7.3	0